A Demonstration of High-**Gradient** Acceleration

W. Wuensch, C. Achard, S. Döbert^{*}, H. H. Braun, I. Syratchev, M. Taborelli, I. Wilson, CERN, Geneva, Switzerland

ROAA011, 15 May 2003, PAC 2003

Acceleration in CLIC -

30 GHz, 150 MV/m, 150 ns 130 MW, 20 J

Background,

Early successes for gradient at X-band, 150 ns

138 MV/m Power limited At KEK 153 MV/m At SLAC

<u>But spectacular failure at 30 GHz, 15 ns</u>

Problems for NLC structures too...

60 MV/m At CERN

Is the difference fundamental? Yes.

- Surface electric field enhancement in coupler
- Something* related to a/\lambda 0.11 vs 0.2

Solutions to coupler found

But,

Lower limit to a/\ - transverse wakefields

* A subject on its own...

Radically different solution needed -

New materials for high gradients

<u> Fungsten, molybdenum, rhodium</u>

·High melting point,

Low vapor pressure

High electrical conductivity

Plenty of high voltage/power applications

Ho.

<u>Survive the effects of an rf arc (20 J remember)</u> Support a higher surface electric field

First test of new materials in rf structures,

End 2001, in CTFII of W coupler iris in copper structure 70 MV/m, limited by surrounding copper <u>gave very encouraging results -</u> coupler damage eliminated

Copper and Tungsten after conditioning

Systematic testing of materials

<u>Test a series of structures of standardized design to</u> compare the relative performances of Cu, W and Mo.

Frequency	29.985 GHz
Number of cells	30+2 matching cells
Phase advance	2π/3
Beam aperture	3.5 mm
Group velocity, v _g /c	4.6 %
Fill time	8.3 ns
$\mathcal{E}_{surface}/\mathcal{E}_{accelerating}$	2.2
Power for E _{accelerating} =150 MV/m	56 MW

Standardized 30 cell W, Mo and Cu iris structures

Assembly by bolting

Cu, W and Mo

Standardized tests in CTFII with 15 ns pulses

Vacuum can mounting for fast turn-around

Installation in CTFII

Conditioning results

Field levels calibrated by accelerated beam!

Effect on surface

Copper 260 MV/m

Tungsten 340 MV/m

Results summary (15 ns)

Structure	Peak accelerating	Average accelerating	Peak surface
Copper	110 MV/m	100 MV/m	260 MV/m
Tungsten	150 MV/m	125 MV/m	340 MV/m
Molybdenum	193 MV/m	153 MV/m	426 MV/m

177 MV/m average acceleration gradient at 30 GHz with 8 ns RF pulses

228 MV/m peak acceleration gradient

Pulse length dependence of Cu structure

32 ns point made using pulse stretcher.

<u>Dramatic improvement from new materials,</u> many new questions to address,

Next: W and Mo scaled to X-band tests at SLAC, 30 GHz, 200 ns at CTF3

A view to the future.