PAC2003

2003 Particle Accelerator Conference May 12-16, 2003 - Portland, Oregon, USA

COLLIDING NANOBEAMS in CLIC with MAGNETS STABILIZED to the SUB-NANOMETER LEVEL

R. Aßmann, W. Coosemans, G. Guignard, <u>S. Redaelli</u>, D. Schulte, I. Wilson, F. Zimmermann

CERN AB-ABP CH-1211 Geneva 23 Switzerland

Overview of my talk:

- 1. Introduction
- 2. How to measure with sub-nanometer accuracy?
- 3. How good can we stabilize accelerator magnets?
- 4. What luminosity is predicted for CLIC?
- 5. Conclusions

1. Introduction

CLIC: Collide 1.5 TeV beams (e⁺e⁻) with transverse spot sizes of **55 nm x 0.7 nm**

- Sub-nm spot size vertically!
- Final doublets must be stable to ~ 0.2 nm.

If the stability goal is not achieved, there is a loss in the luminosity reach!

... these tolerances seem extremely tough (we are usually fighting against []m vibrations...)

CLIC Stability Study:

Bring modern stabilization technology to the accelerator field.

Successfully used in other field (e.g. TEM's, microchip production...).

Goals of the 1st phase of our study:

- Establish vibration measurements with sub-nanometer accuracy.
- Investigate modern techniques for the stabilization of accelerator magnets.
- Predict the time-dependent luminosity performance of CLIC with the measured quadrupole stability.

2. How can we measure with sub-nanometer accuracy?

Triaxial geophones

(Measure velocities in the 4Hz - 315 Hz frequency range)

4 Hz is an important frequency for us! Motion of the quadrupole **ABOVE 4 Hz** must be **stabilized mechanically**.

(slower motion is efficiently corrected by beam-based feedback systems).

Resolution measured as difference between two sensors placed side-by-side.

Why do we believe that 1 nm is *really* 1 nm?

Our geophones **compared** with other sensors for vibration measurements:

- Geophones from other manufacturers.
- Geophones used in other laboratories (in collaboration with L. Zhang, ESRF).
- Capacitive distance meter.

* Comparison also with sensors from **Desy** - No results here. (Collaboration with W. Bialowons, H. Ehrlichmann)

We believe that 1 nm is 1 nm within 10 %!

3. How do we stabilize accelerator magnets?

Stacis2000 by TMC:

Passive+active stabilization system based on **geophones** to measure vibrations and on **piezoelectric actuators** to correct them.

4 independent feet stabilize an honeycomb table.

Vertical stabilization of a CLIC prototype quadrupole

CLIC prototype magnets stabilized to the sub-nanometer level !!

Above 4Hz: 0.52 nm on the quadrupole instead of 6.20 nm of the ground.

Ok, this is good. But is it *stable*?

Honeycomb table used as a girder to support three prototype quadrupoles on their alignment support structure

<u>Note:</u> Results on not-optimized CLIC alignment support structure.

Average: 0.7 nm instead of 0.5 nm.

Cultural noise greatly reduced!!

(Normal CERN working area on the ground floor of a multistore building.)

4. What luminosity can we get with measured quad vibrations?

- Measured spectra to move quads.
- Two-beam simulations.
- Tracking with Merlin.
- BB with **GuineaPig** (lumi and angle).
- Feedback for correction of IP offset.
- Horizontal direction not critical.

~ 70 % of the luminosity maintained

with stabilization + IP feedback!

Luminosity performance with / w/o stabilization and feedback

- Average luminosity over three seconds of CLIC operation (300 pulses).
- Uncorrelated motion of the Final Doublets (left and right of IP).
- Scan of feedback gain to obtain the best luminosity performance.

Large improvement with respect to the floor motion if quad is stabilized!

(66 % of the design luminosity instead of 15 %).

5. Conclusions

Basic feasibility of colliding nanobeams for CLIC demonstrated!

- 1.CLIC prototype quadrupoles stabilized vertically to the 0.5 nm level in a normal CERN environment.
- 2. Vibrations in horizontal plane acceptable Luminosity \geq 95 %
- 3. Some further improvements are required (water induce vibr., support, ...)
- 4. <u>However</u>: already **70** % of the design CLIC luminosity can be obtained with the present technology (in CERN working environment!!).

• Outlook

Proper design of the quadrupole alignment support structure.

Further optimization of stabilization system performance.

Integrated the installation into the detector region.

<u>Members of the CLIC Stability Study Group:</u>

R. Aßmann, W. Coosemans, G. Guignard, S. Redaelli^{*}, D. Schulte, I. Wilson, F. Zimmermann

* PhD Student at the University of Lausanne, High Energy Physics Institute (**UNIL-IPHE**), Lausanne (CH).

<u>Acknowledgements - collaborations</u>

CERN-AB	H. Braun, M. Mayoud, F. Ruggiero, W. Schnell.
UNIL-IPHE	A. Bay, T. Nakada.
SLAC	L. Hendrickson, T. Himel, T. Raubenheimer,
	A. Seryi, P. Tenenbaum.
DESY	W. Bialowons, H. Ehrlichmann, N. Walker.
ESRF	L. Zhạng.
PSI	M. Boge, M. Dehler, J. Krempasky, L. Rivkin.
LNF	P. Raimondi.