

New design of a damped an tapered accelerating structure for CLIC

Alexej Grudiev CERN AB/RF

Alexej Grudiev, New design of a damped and tapered accelerating structure for CLIC

26 June 2003

Structure parameters for average accelerating gradient of 150 MV/m

	TDS	XDS	CDS	HDS
Number of cells	150	77	50	49
E _{surf} [MV/m]	480	345	350	410 (340)
$\Delta T[K]$ (130 ns)	>>250	122	115	67 (50)
$\eta_{\text{PE-beam}}$ [%]	23.8	24.2	24.4	26.3
P _{in} [MW]	250	130	80	73
α [mm]	2.25-1.75	2-1.5	1.7-1.5	1.56-1.5
d [mm]	0.55	0.8-0.55	0.55-0.8	0.55-0.8
Q ₁	~16	44-21	16-14	9-10
δf ₁ [GHz]	2	3.2	1.3	0.8
Q_2	~150	49-?	100-90	100-60
δf ₂ [GHz]	1.8	?	4.0	3.3
$W[V/pC/mm/m](2^{nd}bunch)$	10	45		

Geometry of XDS cell

Alexej Grudiev, New design of a damped and tapered accelerating structure for CLIC

<u>PRO</u>

- + Excellent damping
- + $\Delta T / \Delta T_{min}$ is only ~1.3

+ Surface electric field enhancement in the slot is reduced by proper shape of the iris

+ 4 Cu pieces per structure (or per several structures)

- + No brazing is necessary
- + Better water cooling
- + No water/vacuum joints
- + No vacuum can is
- necessary
 - + Good pumping capabilities

<u>CONTRA</u>

new technology needs to
be shown (machinability,
tolerances, etc.)

- potential danger of coupling the main mode to the load in the case of breakdown

To calculate wakefields using GdfidL

 $\cdot \text{To}$ use parameters of CuZr alloy instead of Cu in the structure design

 $\cdot \mathbf{To} \text{ increase } \alpha \mathbf{I} \lambda$

