# Fatigue of Metals Copper Alloys

Samuli Heikkinen 26.6.2003

## **Temperature Profile of HDS Structure**



#### **Stress Profile of HDS Structure**



**CLIC Number of Cycles** 

f = 100 Hz 24 hours / day 30 days / month 9 months / year 20 years

=> Total lifetime: 5\*10<sup>10</sup> Cycles

## Fatigue

- Occurs when a material experiences lengthy periods of cyclic or repeated stresses
- Failure at stress levels much lower than under static loading
- Fatigue is estimated to be responsible for approximately 90% of all metallic failures
- Failure occurs rapidly and without warning
- There is no fixed ratio between materials Yield- and Fatigue Strength
- Normally the ratio varies between 30-60%
- Fatigue Strengths are usually average values

#### **S-N Curve**

Normally data from the fatigue tests are plotted at *S*-*N curve*. As stress *S* versus the logarithm of the number of cycles to failure, *N*.

When the curve becomes horizontal, the specimen has reached its *fatigue (endurance) limit*, ferrous and titanium alloys.

This value is the maximum stress which can be applied over an infinite number of cycles.

The fatigue limit for steel is typically 35 to 60% of the tensile strength of the material.

*<u>Fatigue strength</u>* is a term applied for nonferrous metals and alloys (Al, Cu, Mg) which do not have a fatigue limit.

The fatigue strength is the stress level the material will fail at after a specified number of cycles (e.g.  $10^7$  cycles). In these cases, the S-N curve does not flatten out.

<u>Fatigue life</u>  $N_f$ , is the number of cycles that will cause failure at a constant stress level.





- Grain size
- Corrosion
- Frequency
- Vacuum



The effect of air and water vapor on the fatigue life of annealed copper.

- Grain size
- Corrosion
- Frequency
- Vacuum
- The Average Mean Stress



- Grain size
- Corrosion
- Frequency
- Vacuum
- The Average Mean Stress
- Ductility (at small values of N)
- Surface finish (Notch effect)
- Microstructure ('Notch effect')
- Temperature (Strength decreases increasing the temperature. Exception confirms the rule...)

#### Pure Copper Properties, annealed and cold worked



|                                                  | Annealed | Cold Worked |
|--------------------------------------------------|----------|-------------|
| Ultimate Tensile Strength [MPa]                  | 240      | 380-415     |
| Yield Strength [MPa]                             | 70       | 345-380     |
| Fatigue Strength at 10 <sup>8</sup> cycles [MPA] | 75       | 126         |

**Figure.** S-N curves of pure copper, Annealed and Cold Worked.

#### How alloying elements affect the properties of copper

• Alloying can increase the strength, hardness, electrical and thermal conductivity, corrosion resistance or change the color of a metal.

- The addition of a substance to improve one property may have unintended effects on other properties.
- The best way to increase the electrical and thermal conductivity of copper is to decrease the impurity levels.



Influence of impurities on the electrical conductivity  $\varkappa$  and specific electrical resistance  $\varrho_e$  of pure copper (Pawlek and Reichel, 1956).



General overview of corper alloys. Relation between Brinell hardness, HB10 (strength,  $R_m$ ) and electrical conductivity,  $\varkappa$  (DKI, 1976)  $\bigcirc$  = hardened material; + = hard-drawn material.

#### Effect of temperature on the softening of copper alloys



# **Properties of some Copper Alloys**

(Outokumpu Poricopper Oy)

| Name                                 | CDA    | Acronym | Thermal<br>Conductivity<br>at 20 C<br>[W/(m*K)] | Electrical<br>Resistivity<br>at 20 C<br>[µOhm*cm] | Yield Strength<br>Cold Worked<br>84% 24 C [MPa] | Yield Strength<br>Annealed<br>24 C [MPa] | Fatigue Strength<br>Cold Worked<br>Number of<br>Cycles[300x10 <sup>6</sup> ] |
|--------------------------------------|--------|---------|-------------------------------------------------|---------------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------|
| Oxygen-free Copper                   | C10200 | Cu-OF   | 394                                             | 1.7241-1.70                                       | 341                                             | 54.5                                     | 117                                                                          |
| Silver-Bearing<br>Oxygen-free Copper | C10400 | Cu-OFS  | 394                                             | 1.74-1.71                                         | 373                                             | -                                        | 103                                                                          |
| Electrolytic<br>Tough-Pitch Copper   | C11000 | Cu-ETP  | 394                                             | 1.7241-1.70                                       | 345                                             | 49.6                                     | 117                                                                          |
| Copper-Chromium                      | C18200 | Cu-Cr1  | 301-343                                         | 2.3-2.0                                           | 520                                             | -                                        | 193                                                                          |
| Cadmium Copper                       | C16200 |         | 360                                             | 1.92                                              | 474                                             | 83                                       | 205                                                                          |
| Cupro-Nickel                         |        | Cu Ni25 | 33.5                                            | 34                                                | 530                                             | 140                                      | 269                                                                          |
| Aluminum Bronze                      |        | Cu Al5  | 75.4-83.7                                       | 10                                                | 441                                             | 186                                      | 131                                                                          |
| Zirconium Copper                     | C15000 | Cu-Zr   | 367                                             | 1.86                                              | 414                                             | 80                                       | 241                                                                          |

# **Comparison of Potential Copper Alloys**

| Alloy name                                                            | Cu OFE | Cu Cr | Cu Cd | Cu Zr |
|-----------------------------------------------------------------------|--------|-------|-------|-------|
| ΔT [°C] (HDS Structure)                                               | 71     | 88    | 80    | 77    |
| $\sigma_{Thermal}$ (Thermal Stress of HDS Structure) [MPa]            | 234    | 305   | 244   | 263   |
| $\sigma_{Fatigue}$ (Fatigue Strength at 10 <sup>8</sup> cycles) [MPa] | 117    | 193   | 205   | 241   |
| $\sigma_{ m Thermal}$ / $\sigma_{ m Fatigue}$                         | 2      | 1.58  | 1.19  | 1.09  |

# **Ultrasonic Fatigue Testing**



UIP250 Ultrasonic Processor 250 Watts

Frequency: 24 kHz

 $86*10^6$ Cycles / hour $2*10^9$ Cycles / day $1.5*10^{10}$ Cycles / week $5*10^{10}$ Cycles / 3.5 weeks



- Make specimens from different materials.
- Adjust different stress levels.
- Create conditions as realistic as possible. (Vacuum etc.)
- => Generate the S-N curves.