Dark current measurements

- **1. Main participants**
- 2. Measurement set-up
- **3. Field enhancement factor and field emission area**
- 4. Results for Cs₂Te photo-cathodes, copper plugs without and with etching cleaning
- **5.** Strange phenomena during conditioning process
- 6. Conclusion

Main participants

- **PS Operators**
- **Klystron Team**
- **b** Eric Chevallay
- 🍇 Thibaut Lefèvre
- **& Guy Suberlucq**

Measurement set-up

Field enhancement factor and field emission area

✤ For RF gun the field emission current could be approximated by : (1)

$$\bar{I}_{FE} = \frac{5.7 \times 10^{-12} \times 10^{4.52 \times f^{-0.5}} Ae(bE)^{2.5}}{f^{1.75}} \times e^{\frac{-kf^{1.5}}{bE}}$$

The modified Fowler-Nordheim plot : $\log(\frac{\bar{I}_{FE}}{E^{2.5}})$ vs $\frac{1}{E}$ give:

$$\boldsymbol{b} = \frac{2.84 \times 10^9 \boldsymbol{f}^{1.5}}{\text{slope of the plot}} \quad \text{the field enhancement factor}$$
$$\log(Ae) = \log(\frac{\bar{I}_{FE}}{E^{2.5}})_{E \to \infty} - \log(5.7 \times 10^{-12} \times 10^{4.52 \boldsymbol{f}^{-0.5}} \boldsymbol{b}^{2.5}) + \log(\boldsymbol{f}^{1.75})$$
$$Ae = \text{area of a single dominant emitter or}$$
$$\text{area of a collection of emitters of similar strengths}$$

(1) J.W. Wang, PhD Thesis, Stanford University (1989)

G. Suberlucq AB-ATB

Dark current measurement on Cs₂Te photocathode

G. Suberlucq AB-ATB

Main results from dark current measurements (1)

Standard conditioning process:

Slow increase of the klystron output power by minimizing break-downs, until 18MW nominal power, corresponding to 100 MV / m. After more than 10 minutes without breakdown, the cathode is considered as conditioned.

	Fresh Cs ₂ Te photo-cath.	Used Cs ₂ Te photo-cath	Chemically cleaned copper plug	ICE cleaned copper plug	ICE cleaned used Cs ₂ Te photo-cath.
f (eV)	3.55	3.55	4.6	4.6	4.6
b From - to	73 - 66	77 - 53	104 - 70	94 - 49	102 - 100
Eq.Radius (nm)	35 - 55	27 - 165	38 - 269	55 - 2616	31 - 37
I _{mean} (mA) at 100MV/m	7.3 – 6.9	6.9 – 6.5	5.2 – 4.8	4.3 – 3.8	3.2

ICE : Argon ion bombardment at 5x10² mbar eq. N₂

G. Suberlucq AB-ATB

Conditionning process of the Cs₂Te photocathode No 162 from 100 MV/m to 105 MV/m

G. Suberlucq AB-ATB

Strange phenomena

charge produced by dark current

Nominal shape

Long tail shape sometime during conditioning process often just before an RF breakdown. Confirmed by light measurements

Evolution of the dark current shape during the conditioning process : Copper plug 4A-17 after ICE

G. Suberlucq AB-ATB

Conclusion

- No major difference between Cs₂Te photo-cathodes and copper plugs in term of dark current up to 100 MV/m
- Cleaning by argon ion bombardment (ICE) helps to reduce dark current
- Conditioning process of the copper plug, with or without ICE, before Cs₂Te cathode preparation, helps for the photo-cathode conditioning.
- The long tail of the charge produced by dark current during the conditioning process should come from ions which can potentially destroy the photo-cathode.
 More investigations should be done.