Proposal of a photo-injector for CTF3

- **1.** Previous results
- 2. CTF3 photo-injector specifications
- 3. Realization inside European Union program FP6
- 4. Remaining Laser and Photocathode work
- 5. Common developments RILIS-CTF3
- 6. Conclusion

A simple design of amplifier capable of high power and based on Nd:YLF has been constructed and tested. Its performance provided good verification for the analytical predictions for gain and efficiency, and the optical quality of the amplifier at high average power was assessed. The most promising aspect of this amplifier has been the measured output pulse stability. At 0.7%rms over 1 hour this already competes favourably with the best previous measurements on lasers and we know this can be improved using a more stable diode-laser power supply and improved coolant temperature stabiliser. Additional stabilisation is also achievable using a closed cycle feedback control system.

I.N. Ross, M. Csatári, S. Hutchins, A HIGH PERFORMANCE DIODE-PUMPED Nd:YLF AMPLIFIER - CTF3 Note 048 – July 2002

BUT

To be taken into account the photo-injector MUST also demonstrate the feasibility for CLIC
From CTF3 Review 2/10/2001
On paper for the laser and with the today technology

- ♦ On paper for the laser and with the today technolog
 ⇒ This has been done : see CLIC Note 462
- As close as possible of the CLIC working point for the photocathode

 \Rightarrow This has been done : see CTF3 Note 020

The photo-injector should be an option for CTF3 and CLIC

IJ.

↓ see CLIC Note 487

G. Suberlucq AB-ATB

Previous result : Feasibility of the photo-cathode

- Cs₂Te photocathode produced by co-evaporation on an RF conditioned copper plug cleaned by argon ion bombardment
- Demonstrated for all CTF3 parameters excepted the number of bunches (not possible to test)
- Minimal quantum efficiency : 3 %
- ✤ Minimal lifetime : 1 week
- If the RF gun pressure is less than 2×10^{-10} mbar with the full RF power

Previous result : Feasibility of the RF gun

No special issue to build the CTF3 RF gun

But

Special attention must be paid to the vacuum

CTF3 photo-injector specifications

		1	NOMINAL	OPTIC	NAL	Unit
	Pulse train duration (1)		1.548			μs
	Pulse train charge (1)		5434			nC
	Average current in the pulse train		3.51			А
	Number of bunches in the sub-pulse		212	106	53	
	Odd/even sub-pulse width (FWHH)		140.735			ns
	Number of bunches in the pulse train (1-2)		2332	1166	583	
o- hoam	Charge / bunch		2.33	3	5	nC
C beam	Distance between bunches		0.667	1.334	2.668	ns
	Bunch width (FWHH)		10	10	10	ps
	E _T normalized (rms)	\leq	25			π.mm.mrad
	∆p/p (rms)	\leq	2			%
	charge stability	\leq	0.25			%
	Repetition rate		1 - 50			Hz
	Mean current @ 50 Hz		271.68			mA
	RF frequency		2.99855			GHz
	RF power	\leq	30			MW
RF gun	Beam energy	\geq	5			MeV
	Beam current		3.51			A
	Vaccum pressure @ nominal charge	\leq	2x10 ⁻¹⁰			mbar
Dhoto	Cs2Te:QE	3	3	3	3	%
cathodo	Wavelength		262	262	262	nm
camoue	Lifetime	>	40			working hours
	UV energy / bunch @ the cathode		0.368	0.473	0.789	μJ
	Beam radius - min @ the cathode		1	1.4	2	mm
	Beam radius - max @ the cathode		2	2.8	4	mm
	Energy stability @ the cathode (rms)	\leq	0.25			%
Laser	Pointing stability	±	0.5			mm
beam	Odd/even sub-pulse width (FWHH)		140.74			ns
conv. and	Odd-even sub-pulse rise/fall time (10%-90%)		2 - 30			ns - ajustable
transport	IR-UV conversion efficiency		0.15			
	Safe margin		0.5			
	Laser beam transport transm.		0.7			
	Pulse shaping and coding transm.		0.7			
	UV cath. energy / Output IR energy		0.03675	0.03675	0.03675	
	Output IR energy / bunch	\geq	10	13	21	μJ
Output	Bunch width (FWHH)	\leq	10	10	10	ps
Laser	Wavelength		1047	nm		
2000	Repetition rate		1 - 50	Hz		
	Timing jitter	±	1	ps		

(1) With starting bunches

(2) The photo-injector must be able to produce only one electron pulse

G. Suberlucq AB-ATB

Train production

G. Suberlucq AB-ATB

CTF3 photo-injector synoptic

G. Suberlucq AB-ATB

E.U. FP6 - JRA3 in the CARE proposal

<u>Title</u>: Charge production with Photo-injectors

Acronym: PHIN Coordinator: A. Ghigo (INFN-LNF)

<u>Main Objectives</u>: Perform Research and Development on charge-production by interaction of laser pulse with material within RF field and improve or extend the existing infrastructures in order to fulfill the objectives. Coordinate the efforts done at various Institutes on the photo-injectors.

Total Expected Budget	Requested EU Funding
3 M€ (FC) + 2.5 M€ (AC) Total = 5.5 M€	4.0 M€

One objective is to develop built and install the CTF3 photo-injector in a time scale of 2.5 years and for a requested budget of 1240 k€

Web site : http://esgard.lal.in2p3.fr/

Participating Laboratories and Institutes:

Institute	Acronym	Country	Coordinator	PHIN Scientific Contact	Associated to
CCLRC Rutheford Appletone Lab. (22)	CCRLC- RAL	UK	P. Norton	I.N. Ross	
CERN Geneva (19)	CERN	CH	H. Haseroth	G. Suberlucq	
CNRS-IN2P3 Orsay (3)	CNRS- Orsay	F	T. Garvey	G. Bienvenu	CNRS
CNRS Lab. Optique Appl. Palaiseau (3)	CNRS- LOA	F	T. Garvey	V. Malka	CNRS
ForschungsZentrum ELBE (10)	FZR-ELBE	D	J. Teichert	J. Teichert	
INFN-Lab. Nazionali di Frascati (11)	INFN-LNF	Ι	S. Guiducci	A. Ghigo	INFN
INFN- Milan (11)	INFN-MI	Ι	S. Guiducci	I. Boscolo	INFN
Twente University- Enschede (13)	TEU	NL	A. den Ouden	J. Verschuur	

G. Suberlucq AB-ATB

Coordinator : A. Ghigo (INFN-LNF)Deputy : L. Rinolfi (CERN)

Work Package	Full name	Short name	Coordinator	Laboratory
WP1	Management and Communication	M&C	A. Ghigo	INFN-LNF
WP2	Charge Production	СР	J. Teichert	FRZ-ELBE
WP3	Lasers	LAS	I. Ross	CCRLC-RAL
WP4	RF Guns and Beam Dynamics	GUN	G. Bienvenu	CNRS-LAL

G. Suberlucq AB-ATB

CTF3 photo-injector Milestones

No	Date	Tasks or sub-tasks to be completed by milestone date	Task number
1	30/06/2004	Report on photcathode studies	2.1
		Report on laser oscillator design	3.1.1
2	01/12/2004	Report on 3 GHz RF gun design	4.2.1
		Laser oscillator test results	3.1.1
3	31/03/2005	Report on laser amplifier design	3.1.2
		Report on UV conversion crystal comparison	3.1.4
5	30/09/2005	Amplifier test results	3.1.3
		3 GHz RF gun test result and delivery to CERN	4.2.3
7	31/03/2006	Laser system test results and delivery at CERN	3.1.5
9	01/12/2006	Report on 3 GHz RF gun commissioning at CERN	4.2.3
		Report on new photocathode materials tests	2.1

Resources

Sequested E.U. funding by work package and over JRA duration for the CTF3 photo-injector (k€)

WP1:M&C	WP2 : CP	WP3:LAS	WP4:GUN	TOTAL
15	55	970	200	1240

Γ	2004	2005	2006	2007	Total
	518	518	208	6	1240

- Solution by During the same period the CERN contribution to the Photo-injector (included commissioning) will be : 1370 k€
 - ➤ Material : 170 k€
 - ➢ Personnel : 1200 k€
 - Civil engineering is not included

E.U. decision in October 2003

Remaining Laser and Photocathode work

- Acquisition of knowledge in Diode Pumped Solid State Laser (DPSSL)
- Section Sec
- Harmonic conversion efficiency study
- Laser monitoring
- ✤ Feedback control, amplitude regulation
- ✤ Automatic control of the laser beam position
- Solution Maintenance of preparation chambers both for probe and drive beam

RILIS : principle and general set-up

G. Suberlucq AB-ATB

RILIS : Automatic Laser Beam Position Control project

G. Suberlucq AB-ATB

Common developments RILIS-CTF3

- **Acquisition of knowledge DPSSL some material exist**
- **Laser monitoring material exist in progress for RILIS**
- Automatic control of the laser beam position material exist in progress for RILIS
- **Harmonic conversion efficiency study material exist**

Conclusion

- **Solution** The CTF3 photo-injector is feasible
- **A suitable parameter list is proposed**
- **Kealization in collaboration with CNRS-LAL and CCLRC-RAL**
- **§** Inside well define resources and schedule
- **Could be in the CARE E.U. framework**
- **Solution Possible synergy with RILIS for the CERN part**