Overview of BLM uses and developments at CERN

- Damage and quench protection
- Beam loss shower distribution
- Detectors
- Ionisation chambers
- Reliability
- Loss signal and background

Quench and damage levels

Detection of shower particles outside the cryostat or near the collimators to determine the coil temperature increase due to particle losses

Loss distribution along the magnets

- Shower simulation; aims:
 - Determination of best monitor location
 - Determination of best shower integration (length of chamber)

CLIC/CTF3 Beam Loss Bernd Dehning

Detector locations and shower distribution

Comparison of different detectors

- Ionisation chamber (1l)
 - Dark current < pA
 - Analog dynamic > 10⁷
 - Time response few 100 ns
 - Ion tail several 100 us
- Scintillator + PMT
 - Time response few ns
 - Gain calibration
 - Radiation sensitive
 - Counting dynamic 10⁷
- Pin diodes
 - MIPS sensitivity 0.3
 - Counting dynamic 10⁷
- ACEM
 - Time response few ns
 - Analog dynamic > 10³

Linearity of beam loss monitors

Saturation in counting mode

Electron & ion induced signal

Booster intensity: ~ 8 10⁹ protons

Meas. protons vs Booster protons (t_{int} =300µs)

24.10.2003

CLIC/CTF3 Beam Loss Bernd Dehning

Ratio ion300(89)µs el-ion. vs Booster proton

CLIC/CTF3 Beam Loss Bernd Dehning

Charge Balanced Converter

- Every f_{out} period is proportional to the average input current during the period
- f_{out} independent of capacitor
- relative error f_{out}/f_{out} proportional to relative error of I_{ref}/I_{ref} and T_{ref}/T_{ref}

SIL Approach

Magnet damage:

- Event likelihood (assumption):
 100 losses which could lead to a damage per year => frequent event
- Consequences:
 Costs: 10⁶ 5 10⁷ SFr or 20 days to 6 months down time => major
- => needed failure probability: $10^{-7} 10^{-8}$ /hours (=>250 y 1 damage)
- Failure to dump:
 - Event likelihood (assumption):
 10 wrong dumps per year => frequent event
 - <1 day down time => minor
 - => needed failure probability: 10⁻⁶ 10⁻⁷ /hours

BLM Signal Transmission Chain

- Detector:
 - Ionisation chamber
 - 3 on either side of the quadrupole magnets
- Signal:
 - Current to frequency conversion (max 400 m distance to ionisation chamber)
 - redundant transmission to threshold comparator in surface buildings

Magnet Damage

$\Sigma < 10^{-7}/h =>$ single 1 10⁻⁸/h

Damages and Failures per Year

BLM in the Collimation Insertions

- Every collimator is equipped with one ionisation chamber
- The combined signal of the cleaning insertion has to be compared with the quench level thresholds

BLM Signal Simulation for the Cleaning Insertion I

- Aims:
 - Minimisation of cross talk
 - Optimisation of BLM signal
 - Definition of total loss estimator

CLIC/CTF3 Beam Loss Bernd Dehning

BLM Signal Simulation for the Momentum Cleaning Insertion II

- First simulation result (Igor Kourotchkine, Protvino)
 - Momentum cleaning, IP3
 - Collimator material: AL/CU
 - Collimator length: 20/50 cm

Collimator	Beam loss monitor (i)						
(j)	1	2	3	4	5	6	7
TCP1	1.0	0.847	0.232	0.164	0.120	0.066	0.031
TCS1	0.0	0.153	0.024	0.012	0.005	0.003	0.003
TCS2	0.0	0.0	0.742	0.440	0.199	0.068	0.032
TCS3	0.0	0.0	0.0002	0.380	0.309	0.136	0.091
TCS4	0.0	0.0	0.0	0.0	0.368	0.254	0.118
TCS5	0.0	0.0	0.0	0.0	0.0	0.474	0.529
TCS6	0.0	0.0	0.0	0.0	0.0	0.0	0.195

E = 7 TeV

http://ab-div-bdi-bl-blm.web.cern.ch/ab-div-bdi-blblm/Ionisation_%20chamber/Literature

False Dump

Pin diode versus Ionisation chamber

- In pilot bunch operation no quench protection
- Very fast loss detection (0.1 to 10 ms) difficult (may not needed)
- First turn detection not possible (1 count, 100 % error, BPM will deliver no intensity information)
- Single bunch loss detection possible

- All possible operation ranges are covert (0.1 ms to several seconds, dynamic of 10⁷)
- First turn sensitivity
- No single bunch loss detection possible (min time resolution batch)

- System fault events:
 - BLM are designed to prevent the Magnet Damage (MaDa) due to a high loss of protons (~ 30 downtime days).
 - BLM should avoid false dumps (FaDu) (~ 6 downtime hours).
 - Use of Safety Integrity Level (SIL).