

Beam loss monitors

- Why?
- Where ?
- How ?
- Difference between CLIC and CTF3
- CTF3 system

Qualitative measurements for machine optimization

• Quantitative measurements :

Controlling the radiation level Machine protection Beam halo-loss study : Emittance dilution, Instabilities, ..

Identifying the 'sensitive parts' of the CLIC accelerator complex

	Drive Beam injector	Drive Beam decelerator	Main Beam accelerator		
Electrons energy	→ 1.18 GeV	1.18 → 0.15 GeV	9 → 1500 GeV		
Beam current /charge	7.5Α / <mark>690μC</mark>	7.5A / <mark>690μC</mark> 140A / 31μC			
Total beam energy	→ 812 kJ	37 → 4.7 kJ	0.09 → 148 kJ		
Number of electrons for 1‰ loss	4 10 ¹²	2 1011	7 10 ⁸		
Typical beam size (mm)	1	0.2	0.02		
<u>'You need to protect the beam dump '</u>					

Protection system for

- Accelerating cavities
- Rings injection and extraction system (RF deflectors,...)

Protection system for

• PETS

• 30 GHz accelerating structures

Collimator and BDS

CTF3 lost beam day - 24/10/03

Requirements:

- Fast time response (ns) :
 - Machine protection issue: Fast Feedback response within the pulse duration
 - Beam loss beam halo study,
- Radiation hardness :

Even if the beam losses are kept small, the radiation level will be high

- Position sensitivity : Important to localize where the losses occurred
- Integrated calibration system : to ensure a good reliability

T. Lefevre

CTF3 lost beam day -24/10/03

 \bullet Electronic can be based on the BPM's electronic providing Σ and Δ

• In the CLIC main linac, the flux of lost particles will be presumably dominated by the losses in the drive beam decelerator

• The arrival time of the two beams does not exceed the pulse duration so that there will be an overlap between the beams

 Need a detector with the capacity of eliminating the huge background of 'low energy' (>1GeV) showers from the Drive Beam losses

(Potential problem for laser wire scanner systems which are supposed to detect few (~10⁴) 'degraded' electrons)

T. Lefevre

CTF3 lost beam day – 24/10/03

Y <u>Shielding</u>

<u>with tungsten (W) (19.25g/cm³):</u> CSDA range for 1GeV electrons (35g/cm²) ~ 1.8cm

<u>with Lead (Pb) (11.34g/cm³):</u> CSDA range for 1GeV electrons (34g/cm²) ~ 2.9cm

Easy to suppress the 'low energy' charged particles

Detector could be based on secondary electron emission or Cherenkov light

T. Lefevre

$\overline{}$

<u>Threshold Cherenkov detector</u>: $\beta > 1/n$

Cherenkov radiator (1atm)	Silica aerogel	Pentane C ₅ H ₁₂	Ethane C ₂ H ₆	Argon Ar	Neon Ne	Helium He
Index of refraction (n-1)	8.4 10 ⁻³	1.7 10 ⁻³	7.1 10-4	2.8 10 ⁻⁴	6.7 10 ⁻⁵	3.5 10 ⁻⁵
Cherenkov threshold (MeV)	3.5	8.2	13.1	20.9	43.5	60.4

Evolution with the gas pressure

CTF3 lost beam day -24/10/03

• <u>CTF3</u> : Develop a ' **beam loss position monitor**' based on SEM or Cherenkov (radiation hard, position sensitive, ns time resolution)

<u>Main beam detection system</u> : not required for CTF3
Simulations to evaluate the impact of the DB losses on the MB detection system
Simulate the different options for the design of the detectors

<u>Cost and Reliability issues</u>: 'Keep the system as simple as possible'

• Online calibration procedure for quantitative measurement and machine protection system (will be easier with an optical system)

• Radiation hardness issue for the long term maintenance

T. Lefevre

CTF3 lost beam day -24/10/03

- Benchmarking experiment
 - Set-up a clean beam transport between two BPM's at low current (very low)
 - Deflect the beam using a steerer to intentionally loose the beam in a known place with a defined angle.
 - Detecting the corresponding showers using the beam loss detectors and comparing the results with the other beam measurements and simulations

