An overview of the hardware part of the structure development campaign as seen on 2-7-2004

> Walter Wuensch 2-7-2004

Our goal is to demonstrate in the coming years full-performance extended operation of prototype accelerating structures, transfer structures and the high-power waveguide system.

> The crux of the matter is to balance speed/probability of success/cost and risk-taking/methodical advance

Presented here are a representative set of steps to arrive at our goal which are (I think) a good compromise based on a limited knowledge of boundary conditions. Good or bad, we do not know how things will work out – and most decisions will be based on results of tests we haven't done yet.

That said, I am sure that we can pull a few more rabbits out of hats and make most of this presentation obsolete.

It is difficult to make predictions,

especially about the future.

J. M. Keynes

Typical time errors are $\pm \pi \sqrt{N_{years}}$ months

Accelerating Structures

CTF2 duplicates (3.5 mm geometry, 30 cells)

Cu $2\pi/3$, $\pi/2$, W, Mo to make direct comparisons to CTFII and X-band results. First extended runs to learn about stability issues.

Copper 30 GHz HDS and circular reference structure Begin move to correct iris range and shape and first test of the HDS geometry. Test of our ability to predict achievable gradient.

Improved Mo/W/bi-metal iris (still 3.5 mm geometry, 30 cells) Includes extended running, two structures each of Mo and W. Old iris range is used to make a direct comparison of materials.

Improved Mo/W/bi-metal with correct iris range,shape and structure length Includes extended running, two structures each of Mo and W. Real iris range is now used to give more accurate estimate of gradient, but circular geometry maintained for simplicity.

Bi-metal HDS

The full Monty. Includes extended running, two structures.

	2004		2005		2006		20	07	2008			
										-		
\$												

Transfer structures

CTF3 30 GHz power station Copper, underway

Mo/Cu, as needed to deal with damage as it occurs

Coupler test

Low power, CLIC prototype, with all associated measurement test pieces.

CLIC prototype structure, low power, with dimmer

True geometry but shorter, copper, low-power, with all associated measurement test pieces, dimmer demonstration under vacuum

CLIC prototype structure, high power, with booster

Full length, fully featured, ready for beam with input coupler for rf input to boost fields. Tests high power, beam/structure interaction, extraction efficiency. Two structures, extended operation.

For TBL, probably scaled geometry Need about fourteen

[20	04	2005		2006		20	07	2008			
ĺ												
ľ												

Waveguides, test areas and computation

	2004		20	2005		2006		2007		2008	
High-Power waveguide system											
Power transfer line											
Pulse compressor											
Rectangular wg components											
CLIC prototype power distribution											
Test areas and diagnostics											
Mid-linac power station											
CTFII accelerating structure test stand											
Breakdown DAQ system											
Two-beam test stand (Sweden?)											
Computation											

Technology development

Pulsed surface heating Laser (TS) Ultrasound Rf cavity, (Dubna, ?)

High gradients DC spark tests (TS)

Complex geometries Fabrication (core,TS) Measurement (TS)

Materials

Copper alloys (core and TS) Refractory metals (core and TS) Multi-metalics (core and TS) Ceramics for absorbers (?)

Preparation techniques Chemistry (TS) Thermal (TS and Saclay) Exotics - glow discharge, laser, particle bombardment Consequences of completion by 2008

Production rate: about five structures per year

Testing rate: about five one-month 24/7 tests per year

Structure team must *at least* be maintained at current level