R. Corsini - 30/8/02

CLIC: Technology, Test Facilities and Future

http://clic-study.web.cern.ch/CLIC-Study/

CLIC

The CLIC study is a feasibility study with the aim to propose a technically viable multi-TeV e± Linear Collider for the post-LHC era, covering a range of centre-of-mass energies from $\sim 0.5 - 5$ TeV

CLIC: Technology, Test Facilities and Future

TALK OUTLINE

- The CLIC scheme brief introduction
- Main challenges

CLIC

- What has been achieved so far
- What remains to be done
- CTF 3 the facility which addresses the main key issues

R. Corsini - 30/8/02

WORLD WIDE CLIC COLLABORATION

- Berlin Tech. University (Germany):
- Finnish Industry (Finland):

CLIC

- INFN / LNF (Italy):
- JINR & IAP (Russia):
- KEK(Japan):

- LAL (France):
- LAPP/ESIA (France):
- LLBL/LBL (USA):
- North-West. Univ. Illinois (USA):
- RAL (England):
- SLAC (USA):
 - Uppsala University (Sweden):

Structure simulations GdfidL Sponsorship of a mechanical engineer CTF3 delay loop, transfer lines & RF deflectors Surface heating tests of 30 GHz structures Low emittance beams in ATF Electron guns and pre-buncher cavities for CTF3 Stabilization studies Laser-wire studies

Beam loss studies & CTF3 equipment

Lasers for CTF3 and CLIC photo-injectors

High Gradient Structure testing, structure design, CTF3 drive beam injector design

Beam monitoring systems for CTF3

LUMINOSITY SCALING IN A LINEAR COLLIDER

R. Corsini - 30/8/0

- Vertical beam emittance at I.P. as small as possible
- Wall-plug to beam efficiency as high as possible
- Beamstrahlung energy spread increasing with c.m. colliding energies

BASIC FEATURES OF CLIC

CLIC

High acceleration gradient (150 MV/m)

- "Compact" collider overall length < 40 km
- Normal conducting accelerating structures
- High acceleration frequency (30 GHz)
- Two-Beam Acceleration Scheme

- Capable to reach high frequency
- Cost-effective & efficient (~ 10% overall)
- Simple tunnel, no active elements
- Central injector complex

• "Modular" design, can be built in stages

CLIC

CLIC MODULE

(6000 modules at 3 TeV)

CLIC TWO-BEAM SCHEME

3.8 m diameter

CLIC MAIN PARAMETERS

CLIC

Center of mass Energy (TeV)	0.5 TeV	3 TeV
Luminosity (10 ³⁴ cm ⁻¹ s ⁻¹)	2.1	8.0
Mean energy loss (%)	4.4	21
Photons / electron	0.75	1.5
Coherent pairs per X	100	4.4 10 ⁸
Rep. Rate (Hz)	200	100
10 ⁹ e [±] / bunch	4	4
Bunches / pulse	154	154
Bunch spacing (cm)	20	20
H/V $ε_n$ (10 ⁻⁸ rad.m)	200/1	68/1
Beam size (H/V) (nm)	202/1.2	60/0.7
Bunch length (µm)	35	35
Accelerating gradient (MV/m)	150	150
Overall length (km)	7.7	33.2
Power / section (MW)	230	230
RF to beam efficciency (%)	23.1	23.1
AC to beam efficiency (%)	9.3	9.3
Total AC power for RF (MW)	105	319
Total site AC power (MW)	175	410

THE CLIC CHALLENGES

COMMON TO MULTI-TEV LINEAR COLLIDERS

Accelerating gradient

- Generation and preservation of ultra-low emittance beams
- Beam Delivery & IP issues

30 GHz components

 Efficient RF power production by Two Beam Acceleration

INTERNATIONAL LINEAR COLLIDER TECHNICAL REVIEW COMMITTE

Review of the various Linear Colliders studies requested by ICFA (February 2001) ILC-TRC Report (2003)

•Status of various studies (TESLA, JLC-C/X, NLC, CLIC) •Ranking of R&D topics still to be made for each study

R1: R&D needed for feasibility demonstration

- R2: R&D needed to finalize design choices
- ✓ R3: R&D needed before starting production
- R4: R&D desirable for technical/cost optimisation

INTERNATIONAL LINEAR COLLIDER TECHNICAL REVIEW COMMITTE

CLIC

TRC Ranking	Affecting	Common to all studies	TESLA	NLC/JLC	Technology (TRC)	High energy (TRC)	Additional to TRC	Common to all studies but more difficult CLIC parameters
D1	Energy	0	1	2	2	0		
KI Feesibility	Luminosity	0	0	0	0	0		
reasibility	Reliability	0	0	0	1	0		
R2	Energy	4	2	2	4	0		
Design	Luminosity	3	3	0	1	1	2	3
optimisation	Reliability	2	1	0	0	0		
R3	Energy	4	6	7	?1	?1		
Production	Luminosity	17	8	6	?3	?1		
optimisation	Reliability	5	3	2	?1	?0		
R4	Energy	3	2	4	?0	?0		
Technical/cost	Luminosity	4	3	1	?0	?0		
optimisation	Reliability	0	0	0	?0	?0		

INTERNATIONAL LINEAR COLLIDER TECHNICAL REVIEW COMMITTE

CLIC TECHNOLOGY-RELATED KEY ISSUES, ACCORDING TO ILC-TRC

R1: Feasibility

- ✓ R1.1: Test of damped accelerating structure at design gradient and pulse length
 ✓ R1.2: Validation of drive beam generation scheme with fully loaded linac operation
- ✓ R1.3: Design and test of damped ON/OFF power extraction structure

R2: Design finalisation

- ✓ R2.1: Developments of structures with hard-breaking materials (W, Mo...)
- ✓R2.2: Validation of stability and losses of drive beam decelerator; Design of machine protection system
- ✓R2.3: Test of relevant linac sub-unit with beam
- ✓ R2.4: Validation of Multi-Beam Klystron with long RF pulse
- ✓ R2.5: Effects of coherent synchrotron radiation in bunch compressors

<u>CLIC STRATEGY</u>

• Key issues common to all Linear Collider studies independently of the chosen technology:

• Collaboration with other Linear Collider studies and with European Laboratories in the frame of a "Design Study" proposed for funding by EU Framework Programme (FP6)

· Key issues specific to CLIC technology:

• Focus of the CLIC study

<u>C L I C</u>

• All R1 (feasibility) and R2 (design finalisation) key issues addressed in new test facility: CTF3

except the Multi-Beam Klystron (MBK) which does not require R&D but development by industry (feasibility study already done)

CLIC TEST FACILITY (CTF II)

1996 -2002

<u>CTF II goals :</u>

- Demonstrate feasibility of a two-beam acceleration scheme
- Study generation of short, intense e-bunches using photocathode RF guns
- Demonstrate operability of μ -precision active-alignment system in accelerator environment
- Provide a test bed to develop and test accelerator diagnostic equipment
- <u>Provide high power 30 GHz RF source for high gradient testing</u> (90 MW, 16 ns pulses)

BREAKDOWN AND DAMAGE OF STRUCTURES

High-power tests of copper accelerating structures indicates that for RF pulses >10 ns, the maximum surface field that can be obtained with copper is always around 300-400 MV/m.

At these field levels structures with large apertures (or rather with large a/λ ratios) seem to suffer severe surface damage.

Microscopic image of damaged iris

Damaged iris - longitudinal cut

The CLIC study group adopted a two-pronged approach to solving the breakdown problem :

- Modify the RF design to obtain smaller a/λ ratios and lower surface field to accelerating field ratio (Es/Ea ~ 2)
- Investigating new materials that are resistant to arcing tungsten looked promising

CLIC

Turning-

Test structure in external vacuum can, with clamped coupler cell

<u>FIRST TEST OF TUNGSTEN</u> <u>IRIS IN CTF II</u>

Irises after high-gradient testing to about the same field level

<u>HIGH-GRADIENT TESTS in CTF II</u>

CLIC

A 30-cell structure with Mo irises and low E_S/E_A largely exceeded the CLIC accelerating field requirements without any damage

190 MV/m accelerating gradient in first cell - tested with beam! (but only 16 ns pulse length)

<u>HIGH-GRADIENT TESTS in CTF II</u>

30-cell clamped tungsten-iris structure

Accelerating fields in Linear Colliders

CONTROL OF TRANSVERSE WAKEFIELDS

- short-range wakes \leftarrow BNS damping
- long-range wakes \leftarrow damping and detuning
- + beam-based trajectory correction, $\boldsymbol{\epsilon}$ bump

For wake suppression - work still focused on waveguide-damped structures of type shown here. Each cell is damped by 4 radial WGs terminated by discrete SiC RF loads.

Excellent agreement obtained between theory and experiment - believe we can solve damping problem

NEXT STEPS IN ACCELERATING STRUCTURE DEVELOPMENT

Potential problem: fatigue limit of copper due to cyclic RF pulsed heating

- New structure design optimization (short RF pulse, frequency ?)
- New materials, construction concepts, bi-metallic structure assembly

GOAL: final structure design tested in CTF3 in 2008

New structure design will determine parameter change

CLIC MAIN PARAMETERS

CLIC

Parameter	Symbol	Present	New	Unit
Overall Parameters				
Center of mass energy	Ecm	3000	3000	GeV
Main Linac RF Frequency	frF	30	30	GHz
Luminosity	L	8	6.2	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
Luminosity (in 1% of energy)	L99%	3.3	3.3	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
Linac repetition rate	frep	100	300	Hz
No. of particles / bunch	Nb	4.2	2.36	10 ⁹
No. of bunches / pulse	kb	154	157	
Bunch separation	Dtb	0.67	0.267 (8 periods)	ns
Bunch train length	t _{train}	101	41.7	ns
Beam power / beam	Рь	14.8	26.6	MW
Unloaded / loaded gradient	Gunl/1	172 / 150	175 / 150	MV/m
Overall two linac length	llinac	28	~28	km
Total beam delivery length	l _{BD}	2 x 2.6	2 x 2.6	km
Proposed site length	l _{tot}	33.2	~33.2	km
Total site AC power	P _{tot}	410	540	MW
Wall plug to main beam power efficiency	h _{tot}	9.3	12.9	%

CLIC

R. Corsini - 30/8/02

THE CLIC RF POWER SOURCE

OVERALL LAYOUT OF CLIC FOR A CENTER-OF-MASS ENERGY OF 3 TeV

WHAT DOES THE RF POWER SOURCE DO ?

The CLIC RF power source can be described as a "black box", combining very long RF pulses, and transforming them in many short pulses, with higher power and with <u>higher frequency</u>

<u>RF POWER SOURCE "BUILDING BLOCKS"</u>

CLIC: Technology, Test Facilities & Future

CLIC

4.16 μs

130 ns

<u>CTF3 MOTIVATIONS AND GOALS</u>

- Build a small-scale version of the CLIC RF power source, in order to demonstrate:
 - full beam loading accelerator operation
 - electron beam pulse compression and frequency multiplication using RF deflectors
- Provide the 30 GHz RF power to test the CLIC accelerating structures and components at the nominal gradient and pulse length (150 MV/m for 130 ns).

<u>CTF3 MOTIVATIONS AND GOALS</u>

- Build a small-scale version of the CLIC RF power source, in order to demonstrate:
 - full beam loading accelerator operation
 - electron beam pulse compression and frequency multiplication using RF deflectors
- Provide the 30 GHz RF power to test the CLIC accelerating structures and components at the nominal gradient and pulse length (150 MV/m for 130 ns).
- CTF3 is built in the area of the former LEP pre-injector complex (LPI). It will make maximum use of the existing equipment (3 GHz RF power plant, magnets...)
- CTF3 is being built in stages. The final phase is foreseen to start in 2005
- The first phase, CTF3 Preliminary, has given the expected results and has been dismantled
- The project is based in the AB Department of CERN, with collaboration with other Divisions and external institutes (INFN-Frascati, SLAC, LAL/Orsay, Uppsala University, RAL)

CTF3 COLLABORATION

CERN, Geneva (Switzerland)	Northwestern University, (USA)
INFN , Frascati (Italy)	SLAC , San Francisco (USA)
LAL , Orsay (France)	Uppsala University , (Sweden)

<u>C L I C</u>

Transition from **positive to negative** momentum compaction α_c seen on streak camera images for different settings of one quad family.

Images taken during the tenth turn at a location with nonzero dispersion. The horizontal position x is dependent on momentum, so the time-momentum correlation becomes apparent.

<u>PRELIMINARY PHASE RESULTS</u> BUNCH COMBINATION (FACTOR 4)

CLIC

Beam current circulating in the ring measured during combination with a beam current monitor

Streak camera image of the beam, illustrating the bunch combination process

R. Corsini - 30/8/02

FIRST "FULL" BEAM LOADING OPERATION IN CTF3

RF signals / output coupler of structure

Dipole modes suppressed by slotted iris damping (first dipole's Q factor < 20) and HOM frequency detuning

Beam current	4 A
Beam pulse lenght	1.5 μs
Power input/structure	35 MW
Ohmic losses (beam on)	1.6 MW
RF power to load (beam on)	0.4 MW
RF-to-beam efficiency	~ 94%

CTF3 MAIN RESULTS UP TO NOW

Preliminary phase (2001-2002)

Low current demonstration of bunch frequency multiplication using RF deflectors

CTF3 injector and linac commissioning (2003-2004)

Nominal parameters achieved in injector and first part of linac

Stable operation in full beam loading condition

First production of 30 GHz RF power beyond CLIC nominal pulse length

SCHEDULE WITH EXTRA RESOURCES						
		2005	2006	2007	2008	2009
Drive Beam Accelerator						
30 GHz power test stand in Drive Beam accelerator						
30 GHz power testing (4 months per year)						
R1.1 feasibility test of CLIC structure						
Delay Loop						
Combiner Ring						
R1.2 feasibility test of Drive beam generation						
CLIC Experimental Area (CLEX)						
R1.3 feasibility test PETS						
Probe Beam						
R2.2 feasibility test representativeCLIC linac section						
Test beam line						
R2.1 Beam stability bench mark tests						

R. Corsini - 30/8/02

CLIC

SCHEDULE WITH EXTRA RESOURCES	2004	2005	2006	2007	2008	2009
Drive Beam Accelerator						
30 GHz power test stand in Drive Beam accelerator						
30 GHz power testing (4 months per year)						
R1.1 feasibility test of CLIC structure						
Delay Loop						
Combiner Ring						
R1.2 feasibility test of Drive beam generation						
CLIC Experimental Area (CLEX)						
R1.3 feasibility test PETS						
Probe Beam						
R2.2 feasibility test representativeCLIC linac section						
Test beam line						
R2.1 Beam stability bench mark tests						

TENTATIVE LONG-TERM CLIC SCENARIO (success oriented)

CLIC

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	2001	2000	2003	2010	2011	2012	2010	2014	2010	2010	2011	2010	2013	2020
Feasibility issues R1 (TRC)													
R&D Issues R2 (TRC)														
and Conceptual Design														
R&D Issues R3 & R4 (TRC))													
and Technical Design														
Engineering Optimisation														
and Project Approval														
Construction														
(possibly in stages)														