CLIC Physics Studies Present and Future

CLIC Physics Report Published

What should be done for CLIC physics study Phase-II?

1

CLIC physics studies phase-II

Start fall 2004 (discussion with PH management)

- New & more detailed studies on physics processes
 - Some processes have been just touched upon, others are new
 - Some new backgrounds identified (muons)
- Detector optimization
 - Study so far uses a somewhat adapted TESLA detector
- Initiate/link with detector R&D
 - If we want to be ready to know how to built a detector for CLIC (tracker, calorimeter, timestamping)
- Study other options for CLIC ? I.e. lower energy 'start up' options
 - ep option ($\gamma p, \gamma A$ options)
 - Cliche (yy factory)
 - Z factory?
 - Higgs factory
 - Compare with TeV class collider (0.5-1 TeV)
 - Full energy $\gamma\gamma$ and $e\gamma$ option for CLIC

CLIC Parameters

CLIC 3 TeV e+e- collider with a luminosity ~ 10^{35} cm⁻²s⁻¹ (1 ab⁻¹/year)

	-			1 -	
E_{cm}	[TeV]	0.5	3	3	To reach this high luminosity: CLIC
L	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	2.1	10.0	8.0	has to operate in a regime of high
$\mathcal{L}_{0.99}$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.5	3.0	3.1	beamstrahlung
f_r	[Hz]	200	100	100	beamerrannang
N_b		154	154	154	
Δ_b	[ns]	0.67	0.67	0.67	NAAAAAA
N	[10 ¹⁰]	0.4	0.4	0.4	
σ_z	$[\mu m]$	35	30	35	
ϵ_x	$[\mu \mathrm{m}]$	2	0.68	0.68	
ϵ_y	$[\mu \mathrm{m}]$	0.01	0.02	0.01	Expect large backgrounds
σ_x^*	[nm]	202	43	≈ 60	# of photons/beam particle
σ_y^*	[nm]	pprox 1.2	1	pprox 0.7	# of photons beam particle
δ	[%]	4.4	31	21	• e+e- pair production
n_{γ}		0.7	2.3	1.5	• $\gamma \gamma$ events
$N_{\perp}^{'}$		7.2	60	43	Muon backgrounds
N_{Hadr}		0.07	4.05	2.3	 Neutrons
$N_{ m MJ}$		0.003	3.40	1.5	 Synchrotron radiation
			old	new	Expect distorted lumi spectrum

3

Detector Parameters

Detector	CLIC
Vertexing	$15\mu m \oplus \frac{35\mu m GeV/c}{n\sin^{3/2}\theta}$
	$15 \mu m \oplus rac{35 \mu m GeV/c}{p \sin^{5/2} heta}$
Solenoidal Field	B = 4 T
Tracking	$rac{\delta p_t}{p_t{}^2}=5. imes 10^{-5}$
E.m. Calorimeter	$rac{\delta E}{E(GeV)}=0.10rac{1}{\sqrt{E}}\oplus 0.01$
Had. Calorimeter	$rac{\delta E}{E~(GeV)}=0.40rac{1}{\sqrt{E}}\oplus 0.04$
μ Detector	Instrumented Fe yoke
	$rac{\delta p}{p}\simeq 30\%$ at $100~GeV/c$
Energy Flow	$rac{\delta E}{E~(GeV)}\simeq 0.3rac{1}{\sqrt{E}}$
Acceptance	$ \cos heta < 0.98$
mask	120 mrad
beampipe	3 cm
small angle tagger	$ heta_{min} = 40{\sf mrad}$

Starting point: the TESLA TDR detector Adapted to CLIC environment

First ideas:

3–15 cm	VDET
15–80 cm	Silicon/forward disks
80–240 cm	TPC
240–280 cm	ECAL (30 X_0)
280–400 cm	HCAL (6λ)
400–450 cm	Coil (4T)
450–800 cm	Fe/muon

..or all silicon (15-120 cm) more compact...

Next step: further studies needed to optimize the detector

A few results and suggestions for studies for CLIC Physics Phase-II

Summary: CLIC vs Hadron Colliders

U. Bauer et al. hep-ph/0201227					
Process	LHC	SLHC	VLHC*	CLIC	
	14 TeV	14 TeV	200 TeV	3-5 TeV	
	100fb^{-1}	1000 fb ⁻¹	100 fb ⁻¹	$1000 \ { m fb}^{-1}$	
squarks (TeV)	2.5	3	20.	1.5-2.5	
sleptons (TeV)	0.34			1.5-2.5	
Z' (TeV)	5.4	6.5	30-40	20-30	
q* (⊤eV)	6.5	7.5	70-75	3-5	
I* (TeV)	3.4			3-5	
ED (ADD/2D/TeV)	9	12	6 5	30-55	
$W_L W_L$	3 .4 σ	> 4.0 σ	30 <i>o</i>	70-90 σ	
TGC (95%)	0.0014	0.0006	0.0003	0.00013- 0.00008	
Λ Compos (TeV)	30	40	100	300-400	
			a an a sugar		

ADR, F. Gianotti, J. Ellis hep-ph/0112004 + updates U. Bauer et al. hep-ph/0201227

CLIC Comparable to VLHC

* Very Large Hadron Collider: 233 km Circumference

SUSY Mass Measurements

E.G. $m_{1/2} = 1500$ GeV, $m_0 = 420$ GeV, $\tan \beta = 20$, A = 0GeV, $sign(\mu) > 0$ (mSUGRA) (point H) $\Rightarrow M_{\mu} = 1150$ GeV Measure inclusive muon spectrum in $\tilde{\mu} \rightarrow \mu \chi^0$ $\Rightarrow E_{max/min} = \frac{E_{beam}}{2} \left(1 - \frac{M_{\chi^0}^2}{M_{tilde\mu}^2}\right) \times \left(1 \pm \sqrt{1 - \frac{M_{\mu}^2}{E_{beam}^2}}\right)$ Mass measurements to O(1%)So far only the smuon and χ_2 mass

Precision studied What about squarks, other gauginos, other sleptons, etc...?

measurement

Other Topics in Summary

- Excited lepton production
- Production of 4th family quarks and leptons
- Leptoquarks
- Effects of non-commutative interactions on physical observables
- Transplanckian effects when the centre of mass system energy is above the fundamental gravity mass scale
- Lepton size measurements

All these processes need a detailed study...

- Split Supersymmetry (long living gluinos)
- Higgless Extra Dimensions Models (effects in TeV range like WW scattering)
- ...

New developments in Theory with new signatures in TeV range..

Detector R&D

Faculty meeting May 2004

19

Tracking Technologies

Properties	Standard pla-	3D- silicon	Monolithic CMOS	a-Si:H pixel detector
	nar crystal		pixel detector	
	silicon			
Collection speed	10ns	Short drift	Thermal drift	Short drift, high field
Electron transient t	20ns	< 1 n s	100ns	2ns
Holes transient t		lns	200ns	150ns
Thickness	300µm	100μm -200μm	2μ m - 8μm	30μm - 50μm
MIP charge signal	24 000 e-	10 000e-20 000e-	100 e- 500 e-	1000 e- 2000 e-
Radiation hardness	3 1014	At least 1015 at	$< 10^{13}$, strong sur-	$> 510^{15}$, limit not
Fluence n/cm ²	at -20°C	+20 ⁰ C	face effects	known, self-annealing
				by mobile H
Operating tempera-	-20°C, cryo-	Room T	Room T	Room T to 60°C
ture	genic T			
Manufacturing Cost	High	High	Low	Low
Field of applica-	Microvertex	Small detector area,	Microvertex detector,	Large area detec-
tions	detector	fast timing, high ra-	low radiation level,	tor, macropad and
	tracker	diation level	slow readout	microvertex, high
				radiation environment

- •Time stamping will be important O(ns)
- Macro-pixels?
- Radiation however not a big issue ~ 5 10¹⁰ neutrons/cm⁻²/year
- ⇒R&D required
- ⇒In context of SLHC R&D or Join/follow the NLC R&D program

3D Silicon

Study of options with CLIC

Here only some comments on ep option

Layout of the LEP tunnel including future LHC infrastructures.

Building CLIC at CERN?

Following up a question

It is possible!

Geological analyses show that there is a contineous stretch of 40 km parallel to the Jura and the lake, with good geological conditions.

However: Not easy to be tangential to LHC

25

Gluon distribution from jets/charm

Extract gluon distribution directly from di-jets or charm events down to 10⁻⁴

High Q² event Region where one as largest chance for new physics Run 113389 Event 200004 Class: 8 9 12 14 16 20 22 23 24 Date 15/10/1997 $Q^2 = 20000 \ GeV^2$ Cross section for **Events** with $Q^2 > 2.10^4 GeV^2$ z, P 12 pb $Q^2 > 10^5 GeV^2$ (DCLU) 0.5 pb [ed z R Needs at least $L= 10^{30} cm^{-2} s^{-1}$

Conclusions

- Phase-I study of physics for CLIC finalized and documented in CERN-2004-005
- Physics studies for the CLIC report have included the effects of the detector, and backgrounds such as e+e- pairs and $\gamma\gamma$ events. The muon background is only partially studied.
- Several channels have not yet been studied in full detail (incl backgrounds etc.). Several new ideas/signatures for physics in the TeV range are emerging and need to be studied
- Detector R&D will be needed (tracking with good time stamping, better calorimetry, forward detectors for lumi, etc.).
 A detailed, more complete, study is one of the most important issues to address for a continuing CLIC physics study group.
- Options for CLIC: in order to take ep or other options seriously, some kind of report summarizing the physics potential (& perhaps machine challenges/benefits in terms of CLIC 'roadmap') is needed.