history of beam delivery optics design 1999/2000 first ever final focus at 3 TeV (Oide odd-dispersion scheme, 3.1 km long) 2001 CLIC collimation system scaled from NLC [Thys Risselada] (Tenenbaum-Irwin scheme 5.8 km long) 2001 novel NLC compact final focus scaled to 3 TeV (Raimondi-Servi scheme, 0.5 km long) 2002 reduced collimation-system length to 2.0 km by omitting half of energy collimation and shortening rest 2002 alternative nonlinear collimation system, still needs some optimization (e.g. E-coll. only) 2002 compact final focus for CTF-3 (Kuroda scheme, 10 m long, CLIC Note 549) all further design work stopped in response to LHC budget crisis

blue: original design, red: "scaled" optics

'02 design documented in CLIC Notes 551 (NB) & 579 (Halo'03)

Merlin, x>3 σ_x : 6.7%, x>6 σ_x : 2.3%, y>3 σ_y : 15.2%, y>6 σ_y : 7.7%, large tail population

S. Redaelli et al, CLIC Note 577 (Nanobeam'02)

what is $\sigma_{x,v}$?

S. Redaelli et al, CLIC Note 577 (Nanobeam'02)

σχ	rms	Gaussian fit
MAD	96.3+/-0.7 nm	55.39+/-0.07 nm
DIMAD	99.0+/-1.4 nm	54.59+/-0.17 nm
Merlin	129.7+/-1.5 nm	57.49+/0.13 nm
PLACET	99.3 +/1.3 nm	54.12+/0.17 nm
σ	rms	Gaussian fit

Зy		
MAD	3.05+/-0.04 nm	0.680+/-0.001 nm
DIMAD	3.35+/-0.06 nm	0.800+/-0.002 nm
Merlin	4.04+/-0.03 nm	0.688+/-0.002 nm
PLACET	3.42+/-0.03 nm	0.775+/-0.002 nm

linear ideal beam sizes: σ_x =37.3 nm, σ_v =0.49 nm

Gaussian fit 'loses' particles

system	Length [m]	Luminosity w/o pinch [10 ³⁴ cm ⁻² s ⁻¹]
present system	2557	4.05
original long collimation system	6186	4.46
final focus only	548	5.51

geometric luminosity without hourglass and without pinch for input distribution from PLACET for old linac parameters, and with $\beta_x=6$ mm, $\beta_y=70$ mm

all luminosity numbers refer to old beam parameters: 4e9, 100 Hz, 154 bunches/ train; for new parameters they would be lower by factor 0.88!

simulated luminosity w/o pinch & w/o hourglass as a function of full-width energy spread with & w/o synchrotron radiation for two different values of $\beta_{x,v}^*$ and assuming $\gamma \epsilon_v = 10$ nm; $L_0 = 4.6 \times 10^{34}$ cm⁻² s⁻¹

full BDS

final focus

geometric luminosity with & w/o collimation

ultimate spot sizes

slides from A. Seryi, T. Markiewicz, LCWS '04

"The performance of the energy collimator system at the higher energy is not clear." (T.R.)

BDS developments & plans

Characterize performance of present system

(J. Resta, T. Asaka)

optimize nonlinear collimation system & assess performance

(A. Faus-Golfe, J. Resta, D. Schulte, F. Zimmermann)

understand final-focus matching scheme in SAD

(T. Asaka, F. Zimmermann)

- push for inclusion in MAD-X of
 - thick element tracking & synchrotron radiation (V. Kappin)

nonlinear matching (O. Bruning)

- improve bandwidth of BDS (EUROTeV fellow)
- modify, e.g., shorten linear (&nonlinear) collimation system (EUROTeV fellow, F. Zimmermann)
- design new final focus from scratch?
- design extraction line? (with V. Ziemann/Uppsala?)
- Collimation, wake field & protection issues (H. Burkhardt?)