



Recent investigations of TS-MME for the CLIC project

## Characterisation of the METSO CuZr/Mo prototype rod obtained by HIP diffusion bonding

G. Arnau Izquierdo, S. Pérouse de Montclos, S. Sgobba

CLIC Workshop 10 June 2005



## Outline

- 1. Remind, HIPing applied to diffusion bonding
- 2. Microoptical observations, CuZr matrix and Mo insert Grain size
- 3. Mechanical properties, CuZr matrix and Mo insert
  - a. Hardness and microhardness profiles
  - b. Tensile properties of the CuZr matrix
- 4. Strength and characterisation of the interface
  - a. Shear strength
  - b. (Tensile strength)
  - c. Soundness of the interface
  - d. Diffusion profile, precipitation of intermetallic phases
- 5. Evolution of HIP-quenched CuZr with further thermal treatments
- 6. Summary and open questions







## Aimed structure







## The Mo + 99.85Cu-0.15Zr system : 1) C15000 alloy



Typical heat treatment:

- ♦ Solution annealing  $\Rightarrow$  Nominal T, t = 900 to 925 °C,
- 5 to 30 min, fast cooling
- ♦ (In reality HIP quenching from 900 °C, 10 h (!), cooling 20 °C/min)
- ♦ Artificial aging (aged only)  $\Rightarrow$  T, t = 550 °C, 3 h



## The Mo + 99.85Cu-0.15Zr system :



## Table 18 Typical mechanical properties of C15000

| Section size |        | Cold work, %, after: |              | Tensile  |     | Yield       |           | Florestion(b)  |
|--------------|--------|----------------------|--------------|----------|-----|-------------|-----------|----------------|
|              |        | Solution             |              | strength |     | strengtn(a) |           | Liongation(D), |
| mm           | in.    | treating(c)          | Aging(d)     | MPa      | KSI | MPa         | KSI       | 70             |
| Rod          | •      |                      |              | ν.       |     |             |           |                |
| 5            | 0.20   | • • •                | 76           | 430      | 62  | 385         | 56        | 8              |
| 6            | 0.25   | 10(e)                | • • •        | 285      | 41  | 250         | 36        | 34             |
| 9.5          | 0.37   | 80                   | 44           | 470      | 68  | 440         | 64        | 11             |
| 13           | 0.50   | 56                   | 47           | 460      | 67  | 435         | 63        | 15             |
| 16           | 0.62   | 61                   | 31           | 440      | 64  | 430         | 62        | 15             |
| 19           | 0.75   | .50                  | 34           | 435      | 63  | 420         | 61        | 15             |
| 22           | 0.87   | 48                   | 52           | 430      | 62  | 415         | 60        | 15             |
| 25           | 1.0    | 48                   | 47           | 430      | 62  | 415         | 60        | 15             |
| 32           | 1.25   | 32                   | 17           | 430      | 60  | 400         | 58        | 18             |
| Wire         |        |                      |              |          |     |             |           |                |
| 1            | (0.04) | • • •                | <b>98(f)</b> | 525      | 76  | 495         | <b>72</b> | 1.5            |
| 2.3          | (0.09) |                      | <b>62(f)</b> | 495      | 72  | 470         | 68        | 3              |
|              |        | 0                    |              | 200      | 29  | 40          | 6         | 54             |
| 1.1          |        |                      | 0            | 205      | 30  | 90          | 13        | 49             |
| 6            | (0.25) | 0(e)(g)              | • • •        | 255      | 37  | 75          | 11        | 50             |
| 13           | (0.50) | 30(e)                | •••          | 365      | 53  | 340         | 49        | 23             |

a) At 0.5% extension under load. (b) In 50 mm or 2 in. (c) At 900 to  $925 \,^{\circ}C$  (1650 to  $1695 \,^{\circ}F$ ). (d) For 1 h or nore at 400 to  $425 \,^{\circ}C$  (750 to  $795 \,^{\circ}F$ ). (e) Mill annealed. (f) Solution treated, cold worked the stated mount, then aged. (g) OS025 temper.



Strength of zirconium-copper depends primarily on cold working. Aging results in some increase in strength, and an increase in electrical conductivity



|    | Solution-               | Amount of cold work, | Agir             | ng         |                     |                   | Elongation, | Hardness,<br>HRB | Electrical<br>conductivity,<br>% IACS |   |
|----|-------------------------|----------------------|------------------|------------|---------------------|-------------------|-------------|------------------|---------------------------------------|---|
|    | treating<br>temperature | %                    | Tempe-<br>rature | Time,<br>h | Tensile<br>strength | Yield<br>strength | 70          |                  |                                       |   |
|    | <b>3</b> °              |                      | <b>3</b> °       |            | MPa                 | MPa               |             |                  |                                       |   |
|    | 900                     | 20                   | 475              | 1          | 310                 | 260               | 25          | 48               | 85 min                                |   |
| rh | 900                     | 80                   | 425              |            | 425                 | 380               | 12          | 04               | <del>85 min</del>                     |   |
|    | 980                     | None                 |                  |            | 200                 | 41                | 54          |                  | 64                                    | ī |
|    | 980                     | 20                   |                  |            | 270                 | 250               | 26          | 37               | 64                                    |   |
|    | 980                     | 80                   |                  |            | 440                 | 420               | 19          | 73               | 64                                    |   |
|    | 980                     | None                 | 500              | 3          | 205                 | 90                | 51          |                  | 87                                    |   |
|    | 980                     | None                 | 550              | 3          | 205                 | 90                | 49          |                  | 95                                    |   |
|    | 980                     | 20                   | 400              | 3          | 330                 | 260               | 31          | 50               | 80                                    |   |
|    | 980                     | 20                   | 450              | 3          | 330                 | 275               | 28          | 57               | 92                                    |   |
|    | 980                     | 85                   | 400              | 3          | 495                 | 440               | 24          | 79               | 85                                    |   |
|    | 980                     | 85                   | 450              | 3          | 470                 | 425               | 23          | 74               | 91                                    |   |





## Diffusion bonding by HIP (courtesy of Metso)



#### Part Manufacture

The joint surface of completed shape of the part and the work method for the capsule assembly are examined, and part manufacture is executed under consideration of the shape of each part and the finishing allowance.

#### Capsule Assembly

Dirt, oxide layers, etc., are removed completely from all parts, and then all the connection parts are sealed by welding with capeule material with good weldability to prevent oxidation.

## Vacuum Sealing

The capsule is checked for leakage, and then the inside is evacuated for vacuum sealing. At this time, heating is done during the evacuation in order to obtain a higher vacuum. This step is not required when capsule assembly is done by EB welding.





# Bimetallic structures







## Microoptical observations, CuZr matrix and Mo insert



grain size across the bimetal section







Microoptical observations, CuZr matrix and Mo insert



## □As-received state (HIP-quenched):

- Cu-Zr matrix: grain size, approximately 70  $\mu$ m
- Increasing from centre to periphery?
- · Mo insert: cross-sectional grain size, approximately 25  $\mu$ m
- Presence of an envelope adhering poorly to the Cu-Zr matrix



## Mechanical properties, hardness and microhardness profiles







HIP-quenched Cu-Zr, compares to fine grained, annealed Cu-OFE

Mo is not significantly softened by the HIP-cycle. Light softening occurs progressively with time at T

| Sample                                    | Rp0.2<br>/MPa | Rp0.5<br>/MPa | Rm<br>/MPa | A<br>/% | toct                                  |
|-------------------------------------------|---------------|---------------|------------|---------|---------------------------------------|
| HIP-quenched Metso                        | 64            | 73            | 216        | 55      | S S S S S S S S S S S S S S S S S S S |
| OFE/OFCu, OS050                           | -             | 69            | 220        | 45      | temper                                |
| C15000, 6 mm wire,<br>mill annealed OS025 | -             | 75            | 255        | 50      |                                       |
| HIP-quenched CERN                         | 79            | 90            | 212        | 40      |                                       |
| Aged 550°C, 3h Metso                      | 60            | 70            | 214        | 57      |                                       |
| 7.2                                       |               |               |            | 8.00    |                                       |







Hall-Petch relationship for copper with grain sizes of 1 mm–3  $\mu$ m (Kozlov, 2002):

 $\sigma = \sigma_0 + k \cdot d^{-1/2}, \ k = 0.14 \pm 0.05 \text{ MPa} \cdot \text{m}^{1/2}$ 

Δσ (25 μm .. 70 μm) ~ 7 MPa .. 15 MPa

FIG. 201. — Variation de la limite d'élasticité conventionnelle du cuivre (pour des déformations de 0,001 et 0,5 p. 100 en fonction de la dimension des grains (d=diamètre en microns).



Mechanical properties, tensile properties of the CuZr matrix



□ As-received state (HIP-quenched):

- Metso and CERN results are consistent
- The HIP-quenched state is not susceptible to directly harden following on ageing treatment

| Alliage |        | Etat        |                            | Résistance | Limite    | Allonge | Cond.      |   |
|---------|--------|-------------|----------------------------|------------|-----------|---------|------------|---|
|         |        |             |                            | traction   | élastique | ment    | électrique |   |
|         |        |             |                            | [MPa]      | [MPa]     | [%]     | [%IACS]    |   |
|         | C15000 | OS025       | (recuit, grain < 25 µm)    | 255        | 75        | 50      |            |   |
|         |        | <b>TB00</b> | (mis en estution)          | 200        | 41        | 54      | 64         | Ь |
|         |        | TF00        | (TB00+vieilii)             | 205        | - 90      | 50      | 87 - 95    | Þ |
|         |        | TH02        | (TB00+écroui ½dur+vieilli) | 358        | 316       | 15      |            | 1 |
|         |        | TH04        | (TB00+écroui dur+vieilli)  | 470        | 425       | 23      | 91         |   |
|         | Cu-OFE | OS025       | (recuit, grain < 25 μm)    | 235        | 79        | 55      | 100        |   |
|         |        | OS050       | (recuit, grain < 50 μm)    | 220        | 69        | 55      | 100        |   |





# Scaning Ele







# Strength and characterization of the interface



A typical diffusion length:  $x^2 = D(T)$ -t where  $D(T) = D_0 exp(-Q/RT)$ 

and D(T) is the interdiffusion coefficient at the temperature T, Q is the activation energy and R is the universal gas constant

Cu7r

10µm (long. scale)

).5um

Q = 146 kJ mol<sup>-1</sup> D<sub>0</sub> = 2.82 10<sup>-10</sup> m<sup>2</sup> s<sup>-1</sup>

x = 1.78 µm, in agreement with the measured profile





# X-Ray diffraction







## Strength and characterization of the interface





Shear surface as from a SEM observation and distribution map of Cu (red), Mo (blue) et Zr (green)



# Strength and characterization of the interface



# Topographical aspect of the sheared interface





Sheared-off interface

## d characterisation face, tensile tests





Estimated (bulk as HIP-quenched CuZr): Rp0.2 = 85.3 (79) MPa Rm = 233 (212) MPa

## Strength and characterization of the interface



## CuZr-Mo interface

- Despite the presence of an intermetallic phase Mo<sub>2</sub>Zr...
- The shear strength of the bimetal interface is higher than the one of the CuZr matrix
- Interdiffusion has occurred as foreseen from diffusion parameters of the Mo-Cu system
- Locally cavities are observed (not expected following a HIP process)
- EDM resulted in one case in a separation of the two phases



## Evolution of HIP-quenched CuZr with further thermal treatments



## **Profile of microhardness for different thermal treatments**





## Evolution of HIP-quenched CuZr with further thermal treatments



## Mo

 No influence on hardness of an additional solution annealing and of further low temperature ageing treatments

## □*C*uZr

- HIP-quenched and solution annealed states are comparable in hardness
- Artificial ageing (550 °C, 3h) is effective after further solution annealing
- Hardness increases from less than 50 HV (annealed states) to approximately 65 HV (solution annealed + aged state)
- For the aged state, increase of microhardness from centre to periphery (Zr depletion)?





- 1. HIP quenching results in a temper state that requires further solution annealing to be susceptible to age
- 2. Ageing after further solution annealing is effective (more or less depending on the position?)
- 3. Depletion of Zr due to diffusion toward the insert-matrix boundary?
- 4. The interface shows (locally?) good interdiffusion and high shear strength
- 5. EDM resulted in a separation of the matrix and the insert (due to the process or to locally poor adhesion?)
- 6. Presence of a Cu envelope?