Luminosity tuning bumps in the CLIC main linac

Peder Eliasson and Daniel Schulte 2005-06-17

Introduction

- BBA required to preserve beam emittance along the CLIC main linac.
- Ballistic alignment method aligns BPMs and Quadrupoles (removes dispersion). Accelerating structures aligned using BPMs incorporated into them.
- Due to wakefield kicks from misaligned accelerating structures, the remaining emittance growth is still unacceptable (~380%). Target is < 100%.
- Emittance/luminosity tuning bumps have to be used as a final stage of beam-based correction.

Prealignment

- 50 "machines" for each side of the IP are created using Placet:
 - Elements are initially scattered according to a normal distribution.
 - Ballistic alignment is applied and acc. structures aligned.
- Average remaining emittance growth for these machines is ~380%.

Element	σ
Quads	50 µm
Acc. structures	10 µm
Acc. struct. realignment	10 µm
Acc. struct.	10
vert. angle	μ rad
Bpms	10 µm

Wakefields

- Offset accelerating structures cause wakefield kicks to the beam.
- Emittance growth due to these effects cannot be completely avoided using BBA.
- By transversely offsetting some structures along the linac the integrated wakefield kicks from all misaligned structures can be partly cancelled.

Emittance/luminosity tuning bumps

- Consists of two accelerating structures that can be moved transversally.
- Positioned close to focusing quadrupoles (where β_y is high and the effective wakefield kick strong).
- Followed by a transverse position feedback.
- Measurement station to evaluate the effect of the structure offsets.

Emittance/luminosity tuning bumps

- Measurement stations traditionally measure emittance after each bump. In this case one single station (at IP) measures luminosity.
- Ideal phase advance between the two structures of a bump is 90°. In this case it is instead 72°, i.e. the phase advance per FODO cell.
- Each bump controlled by two knobs.
 - Knob 1: Both structures offset by same amount.
 - Knob 2: Structures offset be same amount in opposite directions.
- In reality more than 10 bumps needed to avoid large structure offsets.

Performed simulations

- Function optimisation
 - Upper limit for the performance of the bumps.
- Realistic optimisation
 - Viable optimisation method.
 - With and without noise.
- Including BDS (Guineapig for luminosity calculation)
 - Preliminary results.
- Using wide laserwire
 - Simplified luminosity measurement.

Function optimisation

- Initial particle coordinates at IP calculated for the electron and positron beam.
- Response of these particles to knob adjustments calculated.
- Luminosity calculated as the envelope of two upright ellipses. Offset and angle of the beams set to zero.
- Expressions for luminosity as a function of each of the knobs are obtained.
- Brent's method used to optimise one knob after the other.

Function optimisation (results)

_/L0

Realistic optimisation

- Carried out in the same way as the function optimisation except that:
 - optimisation of knob settings is carried out by fitting a secondorder polynomial to luminosity data for five knob settings.
 - simulations were performed with and without noise in the luminosity measurement. (Gaussian distribution, $\sigma = 3\%$, truncated at 3σ .)

Realistic optimisation (results)

_/L0

Including BDS

- Same method again, but:
 - BDS included.
 - Guineapig used to calculate luminosity.
- Comp. to prev. method with noise. 3 machines, 5 bumps.

Using wide laserwire

- Only optimisation on one side.
- Two laserwires used to emulate collision with a perfect beam.
 - Laserwires have a gaussian transverse profile with a size representing the target beam.
 - Laserwires are separated by a betatron phase advance of 90° to measure on both phases.
- During the first and last optimisation step the positions of the laserwires are adjusted. (see later slide)

Using wide laserwire (results)

Using wide laserwire (cont.)

- Obtained results show that the laserwire position has to be continously adjusted.
- Optimum laserwire position found by fitting a secondorder polynomial to five measurement points.
- Adjustment of laserwire position is carried for each of the knobsettings tested during an optimisation step.
- Two "schemes" tested:
 - Adjustments on every fifth optimisation step.
 - Adjustments on step 1, 5, 10, 20, 40, 80, 160, 300

Using wide laserwire (results 2)

Conclusions

- Luminosity tuning bumps work well.
 - In an ideal situation, almost all luminosity can be recovered using 5 or 10 bumps.
 - More realistic tests show that almost 97% can be recovered when noise is added to luminosity measurement. (σ = 3%)
- Novel way of using laserwire give good results.
 - Beam-laser luminosity can be used as a tuning signal.
 - Laserwire position has to be adjusted from time to time.
- Realistic simulations (linac + BDS, Guineapig) show that ~90% of luminosity can be recovered using 5 bumps.
 - Target value is 70%.