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Introduction

• BBA required to preserve beam emittance along the 
CLIC main linac.

• Ballistic alignment method aligns BPMs and 
Quadrupoles (removes dispersion). Accelerating 
structures aligned using BPMs incorporated into them.

• Due to wakefield kicks from misaligned accelerating 
structures, the remaining emittance growth is still 
unacceptable (~380%). Target is < 100%.

• Emittance/luminosity tuning bumps have to be used as a 
final stage of beam-based correction.



Prealignment

• 50 ”machines” for each side of 
the IP are created using Placet:
– Elements are initially scattered 

according to a normal distribution.

– Ballistic alignment is applied and 
acc. structures aligned.

• Average remaining emittance 
growth for these machines is 
~380%.
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Wakefields
• Offset accelerating structures cause wakefield kicks to 

the beam. 

• Emittance growth due to these effects cannot be 
completely avoided using BBA.

• By transversely offsetting some structures along the 
linac the integrated wakefield kicks from all misaligned 
structures can be partly cancelled.



Emittance/luminosity tuning bumps

• Consists of two accelerating structures that can be 
moved transversally.

• Positioned close to focusing quadrupoles (where βy is 
high and the effective wakefield kick strong).

• Followed by a transverse position feedback.

• Measurement station to evaluate the effect of the 
structure offsets. 
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Emittance/luminosity tuning bumps
• Measurement stations traditionally measure emittance 

after each bump. In this case one single station (at IP) 
measures luminosity.

• Ideal phase advance between the two structures of a 
bump is 90°. In this case it is instead 72°, i.e. the phase 
advance per FODO cell.

• Each bump controlled by two knobs.
– Knob 1: Both structures offset by same amount.

– Knob 2: Structures offset be same amount in opposite directions.

• In reality more than 10 bumps needed to avoid large 
structure offsets.



Performed simulations

• Function optimisation
– Upper limit for the performance of the bumps.

• Realistic optimisation
– Viable optimisation method.

– With and without noise.

• Including BDS (Guineapig for luminosity calculation)
– Preliminary results.

• Using wide laserwire
– Simplified luminosity measurement.



Function optimisation

• Initial particle coordinates at IP calculated for the 
electron and positron beam.

• Response of these particles to knob adjustments 
calculated.

• Luminosity calculated as the envelope of two upright 
ellipses. Offset and angle of the beams set to zero.

• Expressions for luminosity as a function of each of the 
knobs are obtained.

• Brent’s method used to optimise one knob after the 
other.



Function optimisation (results)

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0  100  200  300  400  500  600

L/
L 0

Nr of optimisation steps

2 bumps
3 bumps
5 bumps

10 bumps

Target



Realistic optimisation
• Carried out in the same way as the function optimisation 

except that:
– optimisation of knob settings is carried out by fitting a second-

order polynomial to luminosity data for five knob settings.
– simulations were 

performed with and 
without noise in the 
luminosity measurement.

(Gaussian distribution,   
σ = 3%, truncated at 3σ.)
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Realistic optimisation (results)
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Realistic optimisation (results)
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Including BDS
• Same method again, but:

– BDS included.
– Guineapig used to calculate 

luminosity.

• Comp. to prev. method with 
noise. 3 machines, 5 bumps.  0.4
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Using wide laserwire
• Only optimisation on one side.

• Two laserwires used to emulate collision with a perfect 
beam.
– Laserwires have a gaussian transverse profile with a size 

representing the target beam.

– Laserwires are separated by a betatron phase advance of 90°
to measure on both phases.

• During the first and last optimisation step the positions 
of the laserwires are adjusted. (see later slide)



Using wide laserwire (results)
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Using wide laserwire (cont.)

• Obtained results show that the laserwire position has 
to be continously adjusted.

• Optimum laserwire position found by fitting a second-
order polynomial to five measurement points.

• Adjustment of laserwire position is carried for each of 
the knobsettings tested during an optimisation step.

• Two ”schemes” tested:
– Adjustments on every fifth optimisation step.

– Adjustments on step 1, 5, 10, 20, 40, 80, 160, 300 



Using wide laserwire (results 2)
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Conclusions
• Luminosity tuning bumps work well.

– In an ideal situation, almost all luminosity can be recovered 
using 5 or 10 bumps.

– More realistic tests show that almost 97% can be recovered 
when noise is added to luminosity measurement. (σ = 3%)

• Novel way of using laserwire give good results.
– Beam-laser luminosity can be used as a tuning signal.

– Laserwire position has to be adjusted from time to time.

• Realistic simulations (linac + BDS, Guineapig) show that 
~90% of luminosity can be recovered using 5 bumps.
– Target value is 70%.
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