Pressure distribution calculations for the PETS system and the accelerating structure

Costa Pinto P.

- 1- The problem
- 2- The calculation method
- 3- Preliminary results
- 4- Conclusions...and... next?

Recent investigations of TS-MME for the CLIC project, 10 of June 2005

Problem:

RF breakdown in CTF3.

Possible causes: gas discharges?... Electron bombardment due to field emission?...

Necessary to calculate the pressure distribution inside the PETS and accelerating cavities and correlate it with pressures read by the gauges.

The accelerating cavity

The accelerating cavity

The accelerating cavity

The calculation method

too many differential equations!

promising, but long to implement

 Electrical network analogy: The same differential equations as for the analytical solution... but solved numerically by dedicated software! (PSpice)

Fast implementation, user friendly, easy to upgrade

The electrical analogy

Flow of gas molecules \Leftrightarrow Flow of electrons

vacuum

electric

 $\frac{dQ_{molecules}}{dt} = q = C.p$

$$q = V. \frac{dp}{dt}$$

$$\frac{\mathrm{d}\mathcal{Q}_{electrons}}{\mathrm{d}t} = I = G.V$$

$$I = C. \frac{dV}{dt}$$

Pressure p [Torr] Volume V [I] Conductance C [I s⁻¹] Gas flow q [Torr I s⁻¹] *Potential V* [V] *Capacitance C* [F] *Conductivity G* [Ω⁻¹] *Current I* [A]

Flow of gas molecules \Leftrightarrow Flow of electrons

electric

Pressure p [Torr] Volume [I] Conductance [I s⁻¹] Gas flow [Torr I s⁻¹] *Potential V* [V] *Capacitance* [F] *Conductivity* [Ω⁻¹] *Current* [A]

Implementation

Equivalent circuit for a standard cell_i

Implementation

Circuit for the accelerator structure and half of the wave guide to PETS

Watch me

Steady state (bias point analysis)

Transient analysis: Simulation of a pressure burst caused by a spark.

Assumptions: A 40 ns spark in cell 15 induces gas desorption from a region of 100 μ m diameter & 1 μ m deep. gas from 1 monolayer: q_m=6.1x10⁻² Torr I s⁻¹ gas from 5ppm of 0 in Cu: q₀=1x10⁻¹ Torr I s⁻¹

Transient analysis: Simulation of successive pressure bursts induced by 40ns sparks at 25Hz repetition rate.

Assumptions: Each 40 ns spark in cell 15 induces gas desorption from a region of 100 μ m diameter & 1 μ m deep. gas from 1 monolayer: q_m=6.1x10⁻² Torr I s⁻¹ gas from 5ppm of 0 in Cu: q₀=1x10⁻¹ Torr I s⁻¹

Transient analysis: Comparison with experimental data.

conditions: Pressure measured by penning gauges and recorded every second.

Transient analysis: Comparison with experimental data.

conditions: Pressure measured by penning gauges and recorded every second.

Transient analysis: Comparison with experimental data.

conditions: Pressure measured by penning gauges and recorded every second.

Conclusions

PSpice is a useful tool to perform transient vacuum calculations using the electrical network analogy.

The simulation of the accelerator structure and half of the wave guide give coherent results.

And next?...

Complete the simulation (PETS side, HDS)

Improve knowledge about the gas released: composition, quantity and time dependence. (increase acquisition rate; install RGA, measure real pumping speed in the tank, calibrated gauges).

Analyze experimental data and find gas loads matching the pressure profiles.

Thanks:

C. Achard

For the drawings and the photos of accelerator structure.

F. Tecker

For the pressure data.

Transient analysis

Typical pressure burst on P_{Tank}:

