Dynamic Aperture of the CLIC Damping Ring

P.Piminov, The Budker Institute of Nuclear Physics, Novosibirsk, Russia

9th May 2005, CERN

Introduction

The CLIC Damping Ring is ...

- The low equilibrium transverse emittance and small damping times
- Very strong focusing optics and small the dispersion function
- High natural chromatisity
- Strong sextupole magnets
- A lot of damping wigglers

The Simulation of Nonlinear Particle Motion by Tracking Code Acceleraticum[™].

- Dynamic Aperture Calculation
- Nonlinear and chromatisity effects
- Betatron Tune Scan
- Symplectic Integrator for Wiggler Field Distribution

On Energy Dynamic Aperture

The lattice without damping wigglers

Very small 2D Dynamic Aperture due to Strong Coupling Sextupole Resonances

Betatron Tune Scan

Sextupole coupling resonances (2 superperiods) Qx + 2 Qz = 142 and Qx + 2 Qz = 144Qx - 2 Qz = -4 and Qx - 2 Qz = -2

Sextupole Harmonics

$$\begin{aligned} H_s(x, p_x, z, p_z; \theta) &= J_x^{3/2} \sum (A_{3,n}^{3,0} \cos(3\phi_x - n\theta) + B_{3,n}^{3,0} \sin(3\phi_x - n\theta) \\ &+ A_{1,n}^{3,0} \cos(1\phi_x - n\theta) + B_{1,n}^{3,0} \sin(3\phi_x - n\theta)) - \end{aligned}$$

$$\begin{split} -J_x^{1/2} J_z \sum (A_{1,2,n}^{1,2} \cos(\phi_x + 2\phi_z - n\theta) + B_{1,2,n}^{1,2} \sin(\phi_x + 2\phi_z - n\theta) + \\ +A_{1,-2,n}^{1,2} \cos(\phi_x - 2\phi_z - n\theta) + B_{1,-2,n}^{1,2} \sin(\phi_x - 2\phi_z - n\theta) + \\ +A_{1,0,n}^{1,2} \cos(\phi_x - n\theta) + B_{1,0,n}^{1,2} \sin(\phi_x - n\theta)). \end{split}$$

	A, $m^{-1/2}$	B, $m^{-1/2}$
(3,0,3,270)	-30.64	3.43
(3,0,1,70)	-0.01	0.08
(1,2,1,2,144)	72.02	2.4
(1,2,1,2,142)	-55.97	-2.6
(1,2,1,-2,-4)	74.83	3.4
(1,2,1,-2,-2)	45.98	1.5
(1,2,1,0,70)	0.77	0.6

Betatron Tune Scan

Dependence Tune of Amplitude

Dependence Tune of Amplitude

$$\Delta \nu_x = C_{xx}A_x^2 + C_{xz}A_z^2 = \alpha_{xx}J_x + \alpha_{xz}J_z$$
$$\Delta \nu_z = C_{zx}A_x^2 + C_{zz}A_z^2 = \alpha_{zx}J_x + \alpha_{zz}J_z$$
$$\alpha_{xz} = \alpha_{zx}$$

	C_{xx}	C_{zx}	C_{xz}	C_{zz}
1	-0.05 mm^{-2}	0.24 mm^{-2}	0.036 mm^{-2}	1.40 mm^{-2}
2	-0.14 mm ⁻⁴	0.86 mm^{-4}	0.41 mm^{-4}	-0.21 mm^{-4}

α_{xx}	α_{zx}	α_{xz}	α_{zz}
$1.16 \ 10^5 \ \mathrm{m}^{-1}$	$5.58 \ 10^5 \ \mathrm{m^{-1}}$	$5.81 \ 10^5 \ \mathrm{m^{-1}}$	$2.27 \ 10^7 \ \mathrm{m^{-1}}$

Off Energy Dynamic Aperture

Off Energy Dynamic Aperture with Synchro Betatron Oscillations

Dynamic Aperture with Dipole Errors

CLIC Damping Wiggler

The poles sequense: 1/4, -3/4, 1, -1, ..., -1, 1, -3/4, -1/4 of maximum field.

The input data is the result of the 3D simulation magnetic field by MERMAID. Maximum field is 1.7 T Period length is 10 cm Length of wiggler is 2 m Number of poles is 41 Number of wigglers is 2x38

Field Multipole Distribution

Construction Field Multipole from Field Map

The field distribution in the median plane. (horisontal step: dx = 2 mm, longitudinal step ds = 2 mm) Fit by polynom of 6 power

Wiggler Simulation

There are 3 options for the simulation of wiggler

- The Pure Sine Wiggler (+)
- The Thin Lens Model (-)
- The Symplectic Integrator using the field map (+)

Wiggler Orbit

Tune Shift vs. Wiggler Field

Czz vs. Wiggler Field

On Energy Dynamic Aperture

The lattice with damping wigglers

Dynamic aperture is limited by sextupole magnets. Influence of damping wigglers can be neglected for current sextupole petrubation.

On Energy Dynamic Aperture

Damping wigglers with only dipole componet

Off Energy Dynamic Aperture

Recommendations

- Using another scheme of chromatisity correction in the unit cell (change vertical beta function for better separation, reduce sextupole strength and coupling sextupole harmonics)
- Using octupole magnets for nonlinearty correction
- Using achromat sextupole in dispersion free straight section
- Choice of good working point (by betatron tune scan)

Increase dynamic aperture of low emittance ring is very difficult task. Special methods for correction natural chromatisity should be used.

Future Plans

- More detail simulation the CLIC damping ring with damping wigglers (others poles sequence, influence of high multipoles and synchro-betatron resonances, errors, etc.)
- To make the thin lens model of the damping wiggler
- Detail calculation of dynamic aperture with alignment and field errors
- Simulation nonlinear particle motion with synchrotron radiation
- Calculation of nonlinear chromatisity of different parameters (betatron tune, nonlinear dispersion function, compaction factor, etc.)
- Optimization of dynamic aperture