The CLIC proposal for High Power testing in NLCTA

- Built two short HDS-type structure to test at X-band one in Copper and one in Molybdenum
 11 cells with the geometry of the last cell in HDS60
- > Test in NLCTA at the beginning of next year (February, March)
- ≻ Complement with 30 GHz structures at 30 GHz in CTF3 (April →)

HDX-11 Parameters

SLAC Names: L11vg5SI16-Mo, L11vg5SI16-Cu

f (GHz)	11.424
α/ λ	0.16
a (mm)	4.2
d (mm)	1.445
Q	16000
r/Q (Linac Ω/m)	13000
Vg/c (%)	5.1
Δφ (deg), lc (mm)	60, 4.374
For Eacc (MV/m) first cell	150
P (MW)	370
Es (MV/m)	250
Δ Τ (K)	6.9
Eacc avg (MV/m)	~ 130

- Test HDS geometry and technology at high power {low phase advance, slotted iris, 4 quadrant design}
- Test design optimization logic
 {constrains: surface field and Power*sqrt(pulse length)}
- Benchmark with well known NLC copper data
- Learn about material dependence (Cu vs Mo)
- Learn about frequency dependence {similar tests at 30 GHz in CFT3 in 2006}
- Get more statistics

We are not aiming to demonstrate the CLIC structure or the CLIC gradient at X-band with these experiments !

Another way to look at it

red = copper, green = tungsten, blue = molybdenum

Square = 30 GHz, Diamond = Cern X-band, Circle = SLAC X-band

Power-sqrt(t)-limit: 30 GHz 3.5 mm, HDS60, NLC, W-X-band, X-HDS11

Power-sqrt(t)-limit: 30 GHz 3.5 mm, HDS60, NLC, W-X-band, X-HDS11