The CLIC proposal for High Power testing in NLCTA

$>$ Built two short HDS-type structure to test at X-band one in Copper and one in Molybdenum
11 cells with the geometry of the last cell in HDS60
$>$ Test in NLCTA at the beginning of next year (February, March)
> Complement with 30 GHz structures at 30 GHz in CTF3 (April \rightarrow)

HDX-11 Parameters

SLAC Names: L11vg5SI16-Mo, L11vg5SI16-Cu

$f(\mathrm{GHz})$	11.424
a / λ	0.16
$a(\mathrm{~mm})$	4.2
d (mm)	1.445
Q	16000
r/Q (Linac $\Omega / \mathrm{m})$	13000
Vg/c (\%)	5.1
$\Delta \varphi($ deg), Ic (mm)	$60,4.374$
For Eacc (MV/m) first cell	150
$P(M W)$	370
Es (MV/m)	250
$\Delta T(\mathrm{~K})$	6.9
Eacc avg (MV/m)	~ 130

Scientific Motivation for the CLIC X-band proposal

- Test HDS geometry and technology at high power \{low phase advance, slotted iris, 4 quadrant design\}
- Test design optimization logic \{constrains: surface field and Power*sqrt(pulse length)\}
- Benchmark with well known NLC copper data
- Learn about material dependence (Cu vs Mo)
- Learn about frequency dependence
\{similar tests at 30 GHz in CFT3 in 2006\}
- Get more statistics

We are not aiming to demonstrate the CLIC structure or the CLIC gradient at X -band with these experiments!

Scientific Motivation for the CLIC X-band proposal

Another way to look at it

red $=$ copper, green $=$ tungsten, blue $=$ molybdenum
Square $=30 \mathrm{GHz}$, Diamond $=$ Cern X-band, Circle $=$ SLAC X-band

Scientific Motivation for the CLIC X-band proposal

Power-sqrt(t)-limit: 30 GHz 3.5 mm , HDS60, NLC, W-X-band, X-HDS11

Scientific Motivation for the CLIC X-band proposal

Power-sqrt(t)-limit: 30 GHz 3.5 mm , HDS60, NLC, W-X-band, X-HDS11

