

Beam Dynamic Issues at the CTF3 Linac & Delay Loop

Urschütz Peter

CLIC Meeting 24.02.2006

- Measurement of the transverse beam emittance and Twiss parameters in the Linac:
 - Different modes of operation (on/off crest acceleration)
 - Different beam currents (3.5 A / 5 A)
 - Comparison with simulations
 - How to get a better understanding of the emittance in the future
- Machine operation with delayed filling
- Delay Loop:
 - "Injection problem" into the Delay loop
 - DL optics and dispersion measurement

CTF3-Linac – Emittance measurements

- Comparison of simulated and measured emittances in girder 5.
- Re-matching of the optics from girder 5 to 10 or PETS.

CLIC

CTF3 Injector in 2005, new coils (decrease of emittance by a factor 2 (Parmela Simulations))

Overview on results (For the first time intensive studies in the CTF3 Linac performed, 5A)

- Nominal emittance (normalised, rms): 100 π mm mrad (for 3.5 A on crest operation)
- Simulation: 15 25 π mm mrad (3.5 A/ 5 A, on/off crest, after magnetic chicane)

current [A]	on/off crest	girder	E _{x,n,rms} [π μm]	E _{y,n,rms} [π μm]
5.0	on	5	45	25
5.0	off	5	75	30
5.0	on	10	85	80
5.0	off	10	130	140

Results II

current [A]	on/off crest	girder	E _{x,n,rps} .[π μm]	E _{y,n,rps} [π μm]
5.0	on	5	45	25
5.0	off	5	75	30
5.0	on	10	85	80
5.0	off	10	130	140

- Excellent results for vertical emittance almost as simulated!
- Factor 2 larger horizontal emittance
- Emittance increase from girder 5 to girder 10, but still below nominal.
- Important for the PETS operation

What are the Problems?

Girder 5: $\varepsilon_x \sim 2 \times \varepsilon_v$

Indeed a beam property? Beam is round in girder 10.

Could be a resolution problem (experience from girder 10 for some quad scan ranges). In girder 5 we have just 2 quadrupoles, difficult to find a proper scan range.

Large emittance values when Emittances in girder 10 measured with QDB1015. 350 **Resolution problem for scans with** 300 QDB1015 (small beam waist, < 0.2 mm). 250 Emittance (nor, rms) εx - alu 200 εx - carbon Estimate for an overall uncertainty εν - carbon 150 εv - changed polarity (use of different screens, filters) ~ 20% 100 50 0 1005 1010 1015 Quadrupole used for scan

What to do?

Scans with opposite polarity of quadrupoles to distinguish if the difference in horiz. and vert. emittance is a beam property or a resolution problem.

Problem 2 & 3

Emittance growth from girder 5 to 10

Beam related or measurement problem (different magnification, resolution for screens in girder 5 and 10)

What to do?

- Same magnification for beam diagnostic instrumentation in girder 5 and 10 (already done). (- use quadrupoles in girder 9 for quad scans.)

Larger emittances for off crest operation (~ factor 2)

Beam itself (larger energy spread, shorter bunches...)

dispersion, chromatic effects, wakefields,...?

What to do?

- Quadrupole scans at the end of the Linac, to see how the emittance behaves.
- Measurements with different off crest values

Re-matching of the optics

Setting up procedure:

CLIC

- Quad scan (I) in girder 5
- Re-matching of the optics to girder 10 using MAD
- Quad scan (II) in girder 10

<u>Measured rms normalised emittance</u> (5A on crest operation):

 $\varepsilon_{X} = 45 \Rightarrow 85 \pi \text{ mm mrad}$ $\varepsilon_{y} = 25 \Rightarrow 80 \pi \text{ mm mrad}$

Conclusions for the transverse beam parameters

- The new coils in the injector improved clearly the emittance.
 - facilitated beam set-up for PETS operation and improved transmission through the PETS (up to 90%).
- For on crest operation the measured emittances are smaller than the nominal.
- Measurements in girder 5 show that we are not far from simulations.
- The agreement between the MAD model and machine is convincing.

BUT

- There are problems which have to be understood (emittance growth,...)
- We have to dedicate more time for a detailed study during the next run! (most important message of the talk)

Delayed filling

The beginning of the beam pulse (transient, \sim 100 ns) has a higher energy than the steady state.

The timing of the RF pulses is shifted in order to compensate this effect.

"normal" filling

delayed filling (beam is earlier in time)

Success of the delayed filling

Time evolution of the beam energy spread

CLIC Meeting 24.02.2006

5100 SK02(ns

Update Unfreeze Freeze C L C C III C IIII C III C IIII C III C III

5075

5125

5150

Horizontal beam position constant over the pulse.

No losses in PETS

chicane!

CX. TOU

5175

0.5

0.

-0.5

A-1.0

-1.50

-2.00

-2.50

DL - Injection Problem

assumed in MAD: 3 * 7.5 mrad kicks (BHD0490, DHD0495/0505) are subtracted from first septum reality: septa are powered in series, kicks have to be considered in both septa

→ Offset of 15 mm at the end of the second septum in the survey file!

CLIC Meeting 24.02.2006

DL injection compensation

Going into the DL (in operation): playing with injection bend, steerers, transverse deflector, septa to get the beam around.

With MAD: constraints: x = x' = 0 @ BPI0135, small x @ entrance of first septum Going straight: One has to profit from the transverse deflector, kick changes sign.

Operational settings: 3 quadrupoles off, just one defocussing quad on!

We don't know the initial conditions!

We have to perform a quad scan after the end of the Linac.

 Check quadrupole polarities in the machine (QDF0280 inverted...)

CLIC Meeting 24.02.2006

Dispersion measurement I

- Scaling of the Delay loop magnets +/-1%
- Did we indeed scale by +/- 1% or +/- 0.5%?

Scaling magnets down

Scaling magnets up

MAD Simulations: Energy calculated from bending magnet and Septa currents, Machine quadrupole settings.

Dispersion measurement III

Conclusions:

Measurement done only once, starting from a poor ref. trajectory, using just 4 BPIs

reasonable agreement between measurement and simulations.

Things to improve:

- Start from better ref. trajectory
- ♦ More BPIs (+3?)
- Perform measurement with several (Delta p)/p settings

MERCI !

CLIC Meeting 24.02.2006