The scaling of the traveling-wave rf breakdown limit

W. Wuensch CLIC meeting 13-4-2006 Objective: present the case for an rf-breakdown limit scaling of

 $P\tau^{1/\alpha}$ 

P is power flow,  $\tau$  is pulse length, C is the structure circumference and  $\alpha$  is around 1.5 (Mo) to 3 (Cu).



Power flows in a thin layer above structure irises.
Melted spots left by breakdown are small compared to the iris circumference as are images of light.
Energy to melt spot small compared to total pulse

energy.

•Melted spots evolve into damage.

•Power density available to feed discharge above spot of fixed transverse dimension is *P/C.* 

•Surface field only needs to be high enough to *initiate* breakdown.

•Above a certain threshold the effect of the breakdown on the surface geometry is greater than on the field holding capability - material dependent saturation.

#### General observations

•Discharge is a fixed-sized small antenna.

•Motivating question: How many accelerating can be fed by a PETS?

•Inspired by ablation limit argument communicated to me by V. Dolgashev. This is where the  $\tau$  to the something comes from.

•Consistent with the observation at X-band that lower  $v_g$  structures tolerate higher surface electric fields (C. Adolphsen). Rigorous understanding on how diameters/surface fields/power flows interrelate is coming along...

•Basic difference with  $v_g$  reasoning is that power fed into a breakdown is given by a geometrical argument rather than an impedance argument.

•HOWEVER, circumference argument makes a prediction about frequency dependence.

Let's see how it stands up,

## Fixed frequency (30 GHz), variable geometry, fixed material (Cu), different pulse lengths (Argh!), all 'damaged'

|                       | <i>F</i> [GHz] | V <sub>g</sub> /c | E <sub>acc</sub><br>[MeV/m] | E <sub>surf</sub><br>[MeV/m] | <i>P</i> [MW] | <i>T</i> [ns] | <i>D</i> [mm] | $\frac{P\tau^{\frac{1}{3}}}{C}$ |
|-----------------------|----------------|-------------------|-----------------------------|------------------------------|---------------|---------------|---------------|---------------------------------|
| 30 GHz<br>Cu,<br>CTF2 | 30             | 0.047             | 111                         | 241                          | 31            | 30            | 3.5           | 9                               |
| CTF2<br>PETS          | 30             | 0.500             |                             |                              | 240           | 16            | 16            | 12                              |
| CTF3<br>PETS          | 30             | 0.398             | 30                          | 116                          | 100           | 50            | 9             | 13                              |

#### Variable frequency, variable geometry, fixed material (Cu), only 30 GHz 'damaged'

|                              | <i>F</i> [GHz] | V <sub>g</sub> /c | <i>E<sub>acc</sub></i><br>[MeV/m] | E <sub>surf</sub><br>[MeV/m] | <i>P</i> [MW] | <i>T</i> [ns] | <i>D</i> [mm] | $\frac{P\tau^{\frac{1}{3}}}{C}$ |
|------------------------------|----------------|-------------------|-----------------------------------|------------------------------|---------------|---------------|---------------|---------------------------------|
| NEPAL                        | 3              | 0.008             | 50                                |                              | 61            | 1000          | 18            | 11                              |
| CERN<br>X-band               | 11.424         | 0.011             | 153                               | 326                          | 69            | 150           | 6             | 20                              |
| NLC<br>Conditioning<br>limit | 11.424         | Around<br>0.05    | 75                                | Around<br>180                | 120           | 400           | 8.9           | 40                              |
| 30 GHz<br>Cu                 | 30             | 0.047             | 111                               | 241                          | 31            | 30            | 3.5           | 9                               |
| CTF3<br>PETS                 | 30             | 0.398             | 30                                | 116                          | 100           | 50            | 9             | 13                              |

|                | <i>F</i> [GHz] | V <sub>g</sub> /c | E <sub>acc</sub><br>[MeV/m] | E <sub>surf</sub><br>[MeV/m] | <i>P</i> [MW] | <i>T</i> [ns] | <i>D</i> [mm] | $\frac{P\tau^{\frac{2}{3}}}{C}$ |
|----------------|----------------|-------------------|-----------------------------|------------------------------|---------------|---------------|---------------|---------------------------------|
| W-iris         | 11.424         | 0.047             | 93                          | 203                          | 150           | 70            | 9.19          | 88                              |
| W-iris<br>CTF2 | 30             | 0.047             | 151                         | 329                          | 57            | 16            | 3.5           | 33                              |

## Variable frequency, fixed geometry, fixed material (Mo), very different conditioning/surfaces

|                 | <i>F</i> [GHz] | V <sub>g</sub> /c | E <sub>acc</sub><br>[MeV/m] | E <sub>surf</sub><br>[MeV/m] | <i>P</i> [MW] | <i>T</i> [ns] | <i>D</i> [mm] | $\frac{P\tau^{\frac{2}{3}}}{C}$ |
|-----------------|----------------|-------------------|-----------------------------|------------------------------|---------------|---------------|---------------|---------------------------------|
| Mo-iris         | 11.424         | 0.047             | 70                          | 153                          | 85            | 100           | 9.19          | 63                              |
| Mo-iris<br>CTF2 | 30             | 0.047             | 192                         | 420                          | 93            | 16            | 3.5           | 54                              |
| Mo-iris<br>CTF3 | 30             | 0.047             | 148                         | 323                          | 55            | 70            | 3.5           | 85                              |

### Waveguides/components

|                       | F [GHz] | V <sub>g</sub> /c | E <sub>acc</sub><br>[MeV/m] | E <sub>surf</sub><br>[MeV/m] | <i>P</i> [MW] | <i>T</i> [ns] | <i>D</i> [mm] | $\frac{P\tau^{\frac{1}{3}}}{C}$ |
|-----------------------|---------|-------------------|-----------------------------|------------------------------|---------------|---------------|---------------|---------------------------------|
| NLC 4-<br>pack        | 11.424  |                   |                             |                              | 600           | 400           | 40            | 35                              |
| Our<br>high-<br>power | 30      |                   |                             |                              | 100           | 50            | 14.86         | 8                               |
| WR-90                 | 11.424  |                   |                             |                              | 100           | 1200          | 45.7*         | 23                              |
| WR-34                 | 30      | 0.82              |                             |                              | 100           | 50            | 17.6*         | 21                              |

\*broad wall lengths



•To the pedantic (and perhaps correctly), the data does not allow a definitive statement on the validity of anything: damage, conditioning strategy variations, normal fluctuations, pulse length, clamping. It is however clear what we need to do and everything has been set into motion to get there. In the mean time we must do what we can or do nothing!

•Physically plausible.

•Quantitative prediction of surface electric field/power flow/pulse length/geometry.

•Fits 30 GHz data rather well.

•Allowable values seem to be higher at X-band - something is still missing from the full frequency scaling. Iris thickness?

So what are the today's best values for rf constraints (least to most controversial)?

•Pulsed surface heating: Unchanged at 540 MA/m and 70 ns with square root pulse length dependence.

•Peak surface electric field: Unchanged at 380 MV/m. Consistent with dc spark. Consistent with downstream cells in structures.

•Power flow - pulse energy: 50 MW, 70 ns downgraded by 36% (20% in field) to 32 MW, 70 ns for breakdown rate back-off. Assume damage problem is tolerable with a small back-off (threshold effect) offset by better conditioning. Assume compromise P  $T^{\frac{1}{2}}$ /circ for scaling work.



# Alternative view on the Mo structure test - just take gradients

Achieved peak gradient: 140 MV/m, 70 ns Typical ratio between peak and average beam loaded, 20%: 112 MV/m Back-off for breakdown rate, 20%: 90 MV/m Then lower again to increase group velocity...

### Discussion since away day

We may want to consider allowing a higher limit at lower frequency.

Linearly connect X-band copper data to 30 GHz Mo data with a linearly varying pulse length dependence? Yuck.