

Frank Tecker - AB/OP

Quad scan results

DispersionDL length

Results III Quad Scans 2005

How to obtain a better understanding of the measurement results?

- (I) Girder 5: Scans with opposite polarity of quadrupoles to distinguish if the difference in horiz. and vert. emittance is a beam property or related to diagnostics.
- (II) same magnification for beam diagnostic instrumentation in girder 5 and 10.
 - use quadrupoles in girder 9 for quad scans.
- (III) Quadrupole scans at the end of the Linac, to obtain a better understanding of the measured emittance values.

Quad Scans 2006

- > 90 scans done(documented in the logbook)
 - 3 on girder 5
 - 60 on girder 10
 - 27 in the CT line
- automatic program works well (averaging could be useful)
- variety of studies done
 - filters/screens
 - scan ranges
 - pulse length
 - transient subtraction

image subtraction of long and short pulse for scansonly the steady state part is analyzed

Frank Tecker

Results of the last CTF3 run

- Beam transient => Scan results dependent on pulse length
- image subtraction for long and short pulse for scans
 (700ns 300ns)

Frank Tecker

- optical magnification on girder 10 as on girder 5
 - => we measure now also small $\varepsilon < 50 \text{ mm mrad}$ in both planes

larger ε values
 in CT line
 still ε < 100 μmrad

higher energy
=> smaller beam
=> optical limit ?

to be analyzed in detail...

- Linac rematched based on quad scan results on girder 10
- intermediate energies calculated from RF signals
- results in 71.4 MeV compared to 71 MeV measured

• verified by new scans, expect $\beta=3.4m$ $\alpha=-1.2$

measured:

 $\beta: 2.3 - 4.5m$ $\alpha: -0.8 - -1.2$

=> model well established

also used for

linac
 downstream

CT line

Frank Tecker

Dispersion Measurement (1)

measure reference trajectory at nominal magnet settings

 scale magnets by small amount (~1%)

CT Line

Delay Loop

 observe difference trajectory

• E = 101 MeV

Dispersion measurement 19.5.06 (-1%)

Dx (m) **CT** Line Delay Loop 2 • model 1.5 1 0.5 0 -0.5 -1 -1.5 10 20 30 40 50 60 70 80 0 s (m)

 relative good agreement between model and measurement

 worse in the second half of DL wiggler mismatch?

Frank Tecker

Dispersion Measurement (3)

 overall, data for lower currents fits better

energy lower than assumed

more analysis to be done...

- Energy change in the linac and difference trajectory
- Source in the linac mainly chicane on girder 04
- Also in vertical plane !?
- CT line chicane another source

Delay Loop – Path Length

- DL wiggler has path length tuning range of $\sim 9 \text{ mm}$
- phase measurement on CT.BPR0532 after DL
- change mixer (3 GHz) phase until signal close to 0 (10° ⇔ 2.8 mm)
- DL has the correct length within the tuning range

Frank Tecker

'To measure phase error in the RF bunch combination'

T.Lefevre

RF combination : 11th May 2006

T.Lefevre, C.Welsch

RF combination – Wiggler on & off : 12th May 2006

OTR light downstream the Delay Loop @MTV0550 Sweep speed 100ps/mm C.Welsch, T.Lefevre

- Quad scan results show reasonable emittances
- Dispersion very close to expected values
- > optics well understood
- DL loop length correct
- trajectory measurements to be analyzed
- verify magnet currents from control system to magnet!
- Thanks to everyone involved!