

Photoinjector Laser for CTF3

- Background
- Current status of laser elements
- Plans (July, Q3-4 2006)

Laser system schematic

Practical layout

Oscillator/Preamplifier

- Delivered, installed and commissioned in Q2 2005
- Has met all specifications (power, beam quality, timing and amplitude stability)
- Seems capable of accommodating coding hardware

Pump diodes

- Amp 1 and Amp 2 diodes, drivers and chillers delivered
- Amp 1 diode set fully operational
- Amp 2 chiller being commissioned

Amplifier 1

- Amp 1 operational and tested at 5 Hz and 50 Hz
- Cause of rod failure at 50 Hz awaiting further investigation
- Expected output has been delivered (actually slightly exceeded)
- · Near-field uniformity should improve with better rod

Amplifier 1

- Measured output from Amp 1 exceeds target power (3 kW from 3 passes)
- Output saturates in agreement with model

- Pumping arrangement delivers good uniformity across the rod
- Near-field profile is flattened by saturation but shows some effects of rod inhomogeneities

Pulse slicing

- 1.54 μs Pockels cell and driver delivered
- Initial test confirms triggering and basic operation
- Risetime, extinction ratio, throughput and level of induced noise remain to be established (noise level in above trace is misleading)
- Power handling, with additional AOM, remains to be confirmed

Pockels cell ringing

- Note: BBO shows no sign of piezo-ringing
- This compares with fluid-damped KDP behaviour above, albeit on a much longer timescale

Pulse slicing

AO Q-Switch

- Industry standard for Nd:YAG lasers
- 24, 27, <u>41</u> or 68MHz
- More than 30,000 sold world-wide

AO deflector could reduce power loading on Pockels cell by up to 80% for most of the macropulse

Amplifier 2

- Amp 2 chiller being commissioned
- Amp 2 components all delivered and pre-assembled, except for cylindrical lenses
- Diode testing then amplifier testing to be carried out over next month
- Thermal lensing measurements
 will follow

Pulse coding

- Fibre modulation, based on telecoms technology, is fast but lossy and limited in average power
- Measurements on the High Q system suggest 10dB loss before the preamp results in <3dB output reduction
- Delay can be adjusted by varying the fibre temperature (~0.5ps/°C)
- Attenuation can be controlled by varying the fibre bending losses
- Modulator is delivered and fibres are due. Fibre testing will be carried out off-line at RAL

Single pulse slicing

- The single pulse cell needs a small aperture (for speed) so cannot handle high laser power, hence it should be crossed with the $1.54\mu s$ cell
- HV drivers are slew-rate limited, so slicing in the IR is challenging
- Finite rise and fall-times may convert timing jitter to amplitude noise

Single pulse slicing

- Slicing in the UV allows the easiest driver design
- But electro-optic materials are vulnerable to UV damage
- Subsequent frequency conversion is not available to remove ghost pulses

Single pulse slicing

- Slicing in the green should be possible with a double-crystal cell
- This halves the drive voltage, so the requirements are the same as for the UV
- The poorer extinction ratio is mitigated by the subsequent frequency doubling
- This is currently the preferred option

Frequency multiplying

 Crystals are available for two frequency quadrupling schemes:

2 × type I in BBO (preferred)

Type II in KTP + type I in BBO (allows two IR polarisations, perhaps for 3 GHz multiplexing)

• Frequency multiplying will follow successful pulse slicing and control of thermal lensing

Amplitude stabilisation

ADVANTAGES

Scheme is simple and compact, so could be fast

Sensing before the gate minimises switch-on transients

Laser power at the stabiliser can be low

DISADVANTAGES

No automatic correction of residual error towards zero

Manual tuning of gain & offset

Elements after the sensor do not have their noise corrected

Amplitude stabilisation

ADVANTAGES

Bunch charge sensing covers all elements and has high sensitivity

Sensing after the stabiliser allows full feedback correction

DISADVANTAGES

No correction signal until the macropulse begins

Long signal paths mean slow response and increased EM noise pickup

More sophisticated control electronics required

Linear noise reduction

- High speed, high voltage electronics are easier to implement when linear
- Pockels cells' response is linear near T=0.5 but losses are high
- Simple modelling shows that noise reduction with linear electronics can be acceptable for T≈0.9 if the uncorrected noise is <2% rms

- High speed amplifiers are available* which would allow amplitude correction inside 270 μs macropulse
- Noise control system should be designed around the measured noise spectrum

^{*} e.g. Leysop 250: 275 V, 6 MHz BW into 100 pF

- Safety interlocks consistent with CERN standards will need to be implemented
- Laser pulse monitoring could allow fast HV switch-off to protect accelerator should laser fail
- HV monitoring can inhibit laser pulses: pulse slicing Pockels cell probably gives fastest response

Task listing

Oscillator & preamplifier Synchronisation Amplifier 1 (5 Hz) 1.54 μ s slicing (no AOM) Amplifier 2 (5 Hz) Coding principle Thermal lensing correction Frequency multiplying **Coding finalisation** Amplitude stabilisation Single-pulse slicing 50 Hz testing Safety and machine protection

Complete Complete Complete Imminent Imminent Imminent Ship laser to CERN After delivery After delivery After delivery After delivery After delivery

THE END

Original laser schematic

Slide presented at PHIN collaboration meeting, Frascati, May 2004 (see http://www.infn.it/phin/coll_meet.html)

Laser system schematic

Stabilisation issues

- Architecture: complex vs simple, versatile vs optimised, digital vs analog
- Correction between macropulses is practical, but much of the noise spectrum may be inaccessible
- Correction during 1.55 μs pulse looks challenging (BW> few MHz into 20pF Pockels cell load needs 10s of mA drive for 100s of volts change)

Manufacturer	Output	Drive	BW	Gain	Slew	Noise
Elbatech T-501-F	±200 V	200 mA	>0.5 MHz	50		1.2mV rms
Leysop 250	275 V	100 pF	6 MHz	>100	3500	
New Focus 3211	±200 V	110 mA	0.5 MHz	40	650	<100mV p-p
Tegam 2350	±200 V	40 mA	0.2 MHz	50	>250	
Trek Inc 603-2	250 V	80 mA	0.15 MHz	50	>100	<20mV rms

 Correction during 270µs macropulse looks practical, but needs sensing before the optical gate and, probably, before the modulator (unless it can take the full laser power)
 G J Hirst

Central Laser Facility