

The PHIN Photoinjector for the CTF3 drive beam

R. LOSITO - ATB/LPE for the "PHIN Team"

 We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

PHIN

- PHIN Charge Production with <u>PH</u>oto<u>IN</u>jectors is a Joint Research Activity in CARE.
- It concerns several projects:
 - CTF3 Photoinjector

CCLRC

Rutherford Appleton Laboratory

Photoinjector specs and design

Photocathodes (CERN)

RF Gun (LAL)

R. Losito, *The PHIN Photoinjector for CTF3*

PHIN overview

			NOMINAL	OPTIONAL		Unit
	Pulse train duration (1)		1.548			μs
e- beam	Pulse train charge (1)		5434			nC
	Average current in the pulse train		3.51			A
	Number of bunches in the sub-pulse		212	106	53	
	Odd/even sub-pulse width (FWHH)		140.735			ns
	Number of bunches in the pulse train (1-2)		2332	1166	583	
	Charge / bunch		2.33	3	5	nC
	Distance between bunches		0.667	1.334	2.668	ns
	Bunch width (FWHH)		10	10	10	ps
	\mathcal{E}_{T} normalized	\leq	25			π.mm.mrad
	Δρ/ρ	\leq	2			% rms
	charge stability	\leq	0.25			% rms
	Repetition rate		1 - 50			Hz
	Mean current @ 50 Hz		271.68			mA
RF gun	RF frequency		2.99855			GHz
	RF power	\leq	30			MW
	Beam energy	\geq	5			MeV
	Beam current		3.51			A
	Vaccum pressure @ nominal charge	\leq	2x10 ⁻¹⁰			mbar
Photo- cathode	Cs2Te : QE	≥	3	3	3	%
	Wavelength	<	270	270	270	nm
	Lifetime	≥	40			working hours
	IN anargy / hunch @ the asthada		0.269	0 472	0 790	5. I
Laser	Dv energy / bunch @ the cathode		0.308	0.473	0.789	μJ
	Beam radius - min @ the cathode		1	1.4	2	mm
	Beam radius - max @ the cathode		2	2.8	4	mm 0/ mm
	Energy stability @ the cathode (rms)	<u></u>	0.25			% rms
		±	0.5			mm
beam	Odd/even sub-pulse width (FWHH)		140.74			ns
onv. and ransport	Odd-even sub-pulse rise/fall time (10%-90%)		2 - 30			ns - ajustable
	IR-UV conversion efficiency		0.15			
	Safe margin		0.5			
	Laser beam transport transm.		0.7			
	Pulse shaping and coding transm.		0.7			
	UV cath. energy / Output IR energy		0.037	0.037	0.037	
	Output IR energy / hunch	>	10	13	21	u.I
Output Laser	Bunch width (FW/HH)	<	10	10	10	ns
	Wavelength		1047	10	10	nm
	Repetition rate		1 - 50			H7
	Timing litter	<	1 - 50			
		\geq				h2 1112

- (1) With starting bunches
- (2) The photo-injector must be able to produce only one electron pulse

R. Losito, The PHIN Photoinjector for CTF3

PHIN overview

R. Losito, The PHIN Photoinjector for CTF3

R. Losito, *The PHIN Photoinjector for CTF3*

- R&D on photocathodes:
 - Cs₂Te cathodes produced at CERN show a large spread in quantum efficiency (min 3%, max 22%)

• A better control of the process is necessary

Residual gas analysis by mass spectrum analyzer

R. Losito, *The PHIN Photoinjector for CTF3*

23/6/2006

R. Losito, The PHIN Photoinjector for CTF3

3D Simulations with HFSS

- Elliptical iris
- Two symmetric couplers to reduce transverse kick
- Overcoupled $(\beta=2.9)$

Another trick to symmetrise the fields: Racetrack shape for cell iris (Haimson)

R. Losito, The PHIN Photoinjector for CTF3

R. Losito, The PHIN Photoinjector for CTF3

Improvement of static pressure: minimize the out-gassing rate by High temperature bake

• Thanks to the high T bake-out The residual pressure from copper outgassing should be reduced by at least one order of magnitude (down to 10⁻¹⁰ mbar) Copper in oven 3 days, t° = 550°C Fast cooling with Ar jet 150°C =>No grain size enhancement

R. Losito, The PHIN Photoinjector for CTF3

42 holes drilled in the gun walls (Φ =4mm) Volume around the holes coated with NEG

R. Losito, The PHIN Photoinjector for CTF3

- July 2006: delivery of machined cells
- August 2006: low level measurements, fine tuning of cells
- September/October 2006: Brazing
- November/December 2006: installation of bake out system, final low level measurements.
- January 2007: installation in CTF2
- (ps: solenoids are already at LAL)