

Status of PETS

I. Syratchev CLIC Meeting 14.07.2006

Motivations (not in order):

- \cdot We need a spare CTF3 PETS in a case if the existing one will show significant degradation
- We have changed the waveguide standard to increase the RF power transfer efficiency
- The CLIC PETS technology is need to be tested now, including HOM damping features
- We need to produce more power!

The tapering of input and output section increases the overall impedance. 150 MW rf power can be produced with 5A drive beam. Simulated beam losses are close to what we have now. The new design fits into the present layout.

The new CTF3 PETS design follows CLIC technology. Each section consists of 4 identical racks separated with damping slots. The output coupler is integrated into the same piece and have a square waveguide output. The iris shape was optimized to reduce surface electric field.

Transverse wake envelopes with (blue) and without (red) damping material

<u>CLIC</u>

HOM damping configuration

The strong HOM damping (loaded Q-factor 70-30 depending on aperture) practically cancel HOM effect on the beam losses. Confirmed with PLACET. The additional detuning via tapering will certainly help.

New PETS for CTF3 (continued)

Present status:

• The technical design of the CTF3 PETS is finished. Note, for the first time the CATIA files were checked with HFSS to verify RF performance. The order will be placed next month.

• The vacuum tank and waveguide components (overall layout) design is under way.

CLIC PETS 2005.

CLIC unit layout in 2005.

Length of PETS (active/overall)	LPETS	0.8	0.6 / 0.8	0.6/0.77	m
Nominal output RF Power / PETS	Pout	512	556	642	MW
Transfer efficiency PETS > HDS			95	94	%
Number of accelerating structures / PETS		2	4	4	
Aperture, mm Drive beam current, A Unite length, m	22.5 180 2.06				

CLIC PETS 2006.

HDS evaluation, 30 GHz, 150 MV/m

	2005	2006
a/h (first cell)	0.194	0.21
Power, MW	150	85
Length, mm	243	96
Pulse length, ns	58.4	14.7

PETS parameters direct scaling

	2005	2006	
a/A	1.125	1.125	
HDS/PETS	4	8	
Power, MW	642	723	
Unite length, m	2.06	1.55	
Active length, mm	600	345	
Total length, mm	770	515	
Drive beam, A	180	332	
$a_{HDS}/\lambda \times N_{HDS}$	0.776	1.66	

The CLIC unit length is defined by the length of the single HDS and unit layout. With a new HDS, direct application of the PETS developed in a past is not possible. The PETS design and unit layout must be revised.

CLIC PETS 2006 layout

	2005	2006	
a/X	1.125	< 0.8 ◄	
HDS/PETS	4	4	``\
Power, MW	642	360	
Unite length, m	2.06	1.55	1
Active length, mm	600	245 🔶	
Total length, mm	770	270	
Drive beam, A	180	< 170	
$a_{HDS}/h \times N_{HDS}$	0.776	0.84	

In general for the given beam power and structure length the merit factor for the short range transverse wake can be expressed as:

 $M_T = W_T(0) \times I^2$

The structure with 16 mm aperture was next optimised for the HOM damping. The damping technique using damping slots and broadband loads is similar to the original design. To make simulations in more realistic environment, the external vacuum chamber was introduced connected to the PETS central part through the vacuum pumping slots.

To improve the damping performance, the phase advance per cell was used for the first time as a parameter for optimization. As a criteria for optimization, the transverse wake impedance integral at a position of the bunches centers (spaced by 20 mm) was used. This parameter have a minimum for the structure with 72 degrees phase advance. In this case the HOM spectrum is tuned in a best way so that the wake zero-crossing are most close to the bunches centers.

Reducing the phase advance also favor the surface electric field amplitude.

CLIC PETS 2006 HOM damping. 72 degrees/cell

The new compact "single mode" 16 mm diameter power extractor with radial HOM damping. By D. Carillo.

CLIC

Extraction length ~ 15 mm

The old quasi-optical 22.5 mm diameter power extractor

Extraction length ~ 60 mm

The term "single moded" here referred to the fact that the second symmetrical mode TM_{02} has cut-off frequency higher than $a/\lambda=0.8 \rightarrow 0.879$. However the circuit remains very overmoded - 7 other modes with different symmetry can be excited here. With the proper choice of the output waveguide number, the "simple", choke based technology can be used similar to CTF3 power production PETS, resulting in a very compact device.

The choice of a bigger diameter $(a/\lambda > 0.8)$ unavoidably leads to the quasi-optical configuration.

CLIC PETS 2006 matching section

9 mm CTF3 PETS, one matching cell

Dispersion curves for the structure with aperture close to $a/\lambda = 0.8$

PETS 2006 a/ λ = 0.77, 5 matching cells, Matching length ~ 10 mm

a/A = 0.8

I. Syratchev CLIC Meeting 14.07.2006

CLIC PETS 2006 On/Off mechanism

The ON/OFF mechanical design was done in TS, CERN. It allows fast - 50 ms linear movement of the detuning wedge. The mechanical prototype fabrication and the first tests are planned for this year.

CLIC

If we need to avoid power build-up at the end of the structure, then the detuning should be introduced:

$$F_D = F_0 \pm \frac{\beta \times C}{(1 - \beta) \times L}$$

Where F_D is a new detuned synchronous frequency, L - length of the structure and β - group velocity. In our case for the full deployment of the wedges:

F_D= 34.52 GHz Beta/C = 0.782 L = 0.245 m

CLIC PETS 2006 Parameters

The CLIC unit layout

PETS 2006, 30 GHz, 150 MV	″/m	
a/λ 2a, mm φ/cell degrees Cell length, mm Iris thickness R/Q, Ohm Vg/C Q-factor	0.77 15.4 72 2 0.7 1300 0.728 7500	
PETS/Quad. HDS/PETS Power, MW E max, MV/m Unite length, m Active length, mm Extraction length, mm N cells Total length, mm Drive beam, A a HDS /A X NHDS	2 4 360 122 1.55 246 25 123 270 151 0.84	

Two Beam Test Stand

To produce 360 MW from 35A drive beam, the new CLIC PETS design can be used directly. The only modification is a structure length:

$$L_{TBTS} = L_{CLIC} \times \frac{I_{CLIC}}{I_{CTF3}} = 1.06 m$$

Test Beam Line

In a tests beam line single PETS should decelerate the drive beam by about 5 MeV, which corresponds to 165 MW produced power. The 72 cm long new CLIC PETS will do that.

Different frequencies. Assuming similar deceleration, current and TBL layout, the PETS aperture will be scaled as:

CLIC - other frequency and gradient (example)

Frequency 18 GHz, Accelerating gradient 100 MeV/m, 3 TeV				
Frequency, GHz Gradient. MeV/m	18 100		Drive beam energy, Ge∨ Number of PETS/sector	1.57038674 1171.529359
HDS length (active) m	0.167	72 5	Number of HDS/sector	2343 058717
HDS length, m	0.178597222 (Ncells + extra cells)	Sector Length . m	418,4637784
HDS/PETS	2	,	Energygain/sector.GeV	30.6122449
PETS/Quadrupole	2		Number of Sectors	49
Unite length, m	0.714388889		CLIC accelerator length, m	20504.72514
Quad+BPM, m	0.25		sing, Beam Energy, MW x sec	0.41657714
PETS length	0.232194444		Combination factor	32
Coupler length, m		0.05	Wt, V/pC/m/mm	9.265279576
PETS active length,m	0.182194444		MT	0.190747046
PETS aperture, mm	19	5.7	HDS apperture	6.06
PETS R/Q, Ohm/m	1694.251625		Power/circ. Norm. to HDS	0.682689198
PETS Vgroup, V/C	0.5331188		Pulse length, ns	43.6
PETS /OFF detuning, GHz	1.880198648		LF pulse lenght 1,Combination	136.7296
Power/HDS, MW	70	100.3	LF pulse lenght 2, Linac	136.6981676
Power/PETS, MW	149.8311277		Drive Linac fr., GHz	1.125
DB current, A	124.1955673	Single comp	plex: T=2 x 32 x Nsector x Pulse i	length
Electrons/bunch	311000000		Drive/main efficiency	0 180966243
Bunch spacing, sec	2.77778E-10		Diff a main emelency	0.100000240
Beam current A	1 79136		Klystron-modulator efficiency	0.7
N bunches	102		DB accelerator efficiency	0.93
T bunches, sec	2.80556E-08		Wall plug to main efficiency	0.117809024
Beam energy, MW x sec	0.0753864		Repetition rate, Hz	243
Beam power, MW	18.3188952		Wall plug power, MW	310.9930724

I. Syratchev CLIC Meeting 14.07.2006