KICKERS FOR CTF3 & CLIC

Michael Barnes CERN AB/BT

Prepared with input from Tony Fowler

M.J. Barnes Kickers for CTF3 & CLIC

CTF3 Programme

M.J. Barnes Kickers for CTF3 & CLIC

• Strip-line kickers: preliminary specifications

	CR Extraction	CLIC	Tail Clipper		
Beam energy		300	2500	200	MeV
Total kick deflection angle ("B" & "	E" Fields)	5	2.5	1.2	mrad
Strip-line plate separation	40	20	40	mm	
Strip-line length	1.7	3	Up to 1.5	m	
Rise & fall-times (0.25% to 99.75%)	≤ 70	≤ 70 ≤ 30		ns	
Pulse duration	200	50 to 60	Up to 140	ns	
Flat-top reproducibility	± 0.1	± 0.1	NA	%	
Flat-top stability (including droop)	± 0.25	± 0.25	NA	%	
Ponotition rate	Initial	5		5	Hz
Repetition rate	Nominal	50	150	50	Hz
Pulse voltage	9	10.5	3.2 for 1m	kV	
Pulse current (into 50 Ω load)	180	210	64	Α	
Timing Jitter			≤ 1 rms	ns	

Tail Clipper: Introduction

- Output from CTF3 CR is 140ns long (35A beam current);
- Kicker is required to be able to adjust length of beam pulse;
- Maximum duration of required kick pulse is 140ns;
- Fast rise of kick pulse is required to minimize uncontrolled beam loss;
- "Flat-top" of kick pulse is not important as deflected beam is to be thrown away.

Tail Clipper: Rise Time

- Tail Clipper requires short rise-time (≤ 5 ns) !.
- •To provide 1.2 mrad, with strip-lines terminated in 50 Ω , requires 3.2 kV on 1 m long strip-lines;
- Electrical pulse propagating through 1m strip-lines, at speed of light, takes 3.3 ns!
- In order that CTF3 beam does not "see" fill-time of striplines can the strip-lines be "charged" from the CR (beam entrance) end ?

Tail Clipper: Deflection

Tail Clipper: Conclusions

• To make use of both the electrical and magnetic fields to deflect the beam, the strip-lines must "charged" from the CLEX (beam exit) end.

• In order that plate fill time does not significantly effect deflection rise time, several sets of strip-lines, mechanically in series, will probably be required.

Combiner Ring Extraction Kicker

Installed CR Extraction kicker (requested for April 2006):

- For operation in **2006** an **existing** ex-Electron-Positron Accumulator **kicker system**, which only partially satisfies the specifications, has been modified and installed.
 - Employs 2 ferrite-cored kicker magnets whose vertical aperture is 35mm, smaller than the nominal 40mm required. The vertical restriction excluded the possibility of inserting metallized ceramic plates to improve the beam impedance.
 - Existing HV pulsed power supplies are used using thyratron switched PFN.
 - Pulse top flatness and reproducibility remain to be measured and are not guaranteed to fulfill specifications.

Combiner Ring Extraction Kicker

• The impedance of the kicker structure seen by the beam must be such that any induced instabilities are inconsequential. The **strip-lines** of a **kicker** have been designed by CIEMAT; a paper describing the design of the strip-lines was presented at EPAC 06 [6]:

HFSS 3D Model of strip-lines with rectangular aperture & Predicted "E" field at middle plane

- Strip-lines should be delivered to CERN mid 2007: with installation at the earliest subsequent opportunity.
- Strip-lines could initially be pulsed with existing EPA thyratron switch.

M.J. Barnes Kickers for CTI

Kickers for CTF3 & CLICPresentation to CTF3 team, 20/10/2006 pg9

Pulsed Power Supply for CLIC

Summary of pulsed power supply requirements for CLIC:

- Rectangular pulses, ~10 kV, up to a repetition rate of 10 MHz in burst-mode operation;
- To achieve required rise and fall times (≤70 ns), a solid-state switch capable of both closing and opening is required;
- Most fast solid-state devices that have an opening capability are relatively low voltage, e.g. MOSFETs with a rating of up to 1200 V & 22 A <u>continuous</u> (88A pulsed) are available (~20 ns switching time: APT 12057B2FLL_LFLL).
- Special circuits are required to take advantage of these fast solid-state switches, e.g.:
 - Inductive Adder;
 - Solid-state switches connected in series.

Inductive Adder

Inductive Adder, as shown below, has been developed extensively by teams lead by Ed Cook (LLNL, USA) and Dick Cassel (SLAC, USA).

- The basic circuit used to drive the transformer primary winding consists of a capacitor and a switch. The switch is connected between the capacitor and ground.
- The switch is gated on to initiate the pulse and gated off to terminate the pulse.
- To achieve fast rise and fall times, the <u>transformer must have very</u> <u>little leakage inductance</u>: a requirement usually met by using a single turn primary winding and a single turn secondary.
- Each module provides secondary current and magnetizing current.
- The output voltage on the secondary winding is approx. the sum of the voltages appearing on each of the primary windings.

Klystron Modulator at SLAC (76 IGBT modules) – based on Inductive Adder

Solid-State Modulator: 3 turn secondary (Output: 500kV, 2kA, 3µs width)

M.J. Barnes Kickers for CTF3 & CLIC

MOSFET Inductive Adder (SLAC)

Drive Board/Transformer Module

An Inductive Adder Subassembly

M.J. Barnes Kickers for CTF3 & CLIC

Solid-State Switches Connected in Series

Solid-state switches consisting of stacked MOSFETs, as shown below, have been developed extensively at TRIUMF by Gary Wait & Michael Barnes.

- The DC storage capacitor is charged up to the required high voltage.
- The number of series modules, including redundancy, is chosen based on the required high voltage.
- The switch is gated on to initiate the pulse and gated off to terminate the pulse.
- The switch control unit is at switch source potential, i.e. floating with respect to ground.
- To achieve fast rise and fall times, <u>low inductance</u> is required between the switch control unit and switch.
- Each module provides load current.
- The output voltage is approximately equal to the DC storage capacitor voltage (minus D-S voltage drops).

Example of Kickers Based on Series MOSFETs (TRIUMF)

Prototype 1MHz kicker (1995) 2 FET stacks in push-pull; *capacitive load*; Up to 10 kV pulses; 40 ns rise & fall time; 1 MHz with storage cables (fixed rep-rate) & variable up to 0.5 MHz without storage cables.

Charge Booster Kicker (2001) [(used at Grenoble (France) & TRIUMF)] 2 FET stacks in push-pull; *capacitive load*; up to -3.5 kV; 63 ns rise & fall; DC to 52 kHz continuous (variable); *pulse width 350 ns to >10 s (variable)*.

Example of Stacked MOSFET kickers continued (TRIUMF)

MuLan/MuCap Kicker (2003) [used at PSI (Switzerland)]

4 kicker cabinets. Each consisting of 2 FET stacks in push-pull; *capacitive load*;

±12.5 kV; 40 ns rise & fall;

DC to 77 kHz continuous;

pulse width 160 ns to DC. Individual MOSFET cards tested to 3 MHz continuous.

MuLan/MuCap Kicker Cards (2003)

ILC Prototype Kicker (stacked MOSFETs), 2005

M.J. Barnes Kickers for CTF3 & CLIC

ILC Prototype Kicker (stacked MOSFETs), 2006

One FET stack of prototype ILC kicker (Rev 1).

Backplane of prototype ILC kicker (Rev 1).

M.J. Barnes Kickers for CTF3 & CLIC

Summary of TRIUMF Kickers: Stacked MOSFETs (1994-2006)

Date Built	Output Pulse Voltage	Rise & fall time	Pulse Width Range	Frequency Range	Project	
	voltage	(1070-9070)		(continuous)		
1994 ¹	5 kV	30 ns	250 ns to 1 s	1 Hz to 20 kHz	ISIS	
1995 ¹	10 kV	40 ns		Fixed: 1 MHz	KAON chopper	
				Variable to 0.5 MHz		
20001	±10 kV	100 µs	20 ms to DC	DC to 10 Hz	ISAC Mass Sep	
20011	-3.5 kV	63 ns	350 ns to DC	DC to 52 kHz	Charge Booster	
2003 ²	±12.5 kV	40 ns	160 ns to DC	DC to 77 kHz	MuLan/MuCap	
2004 ²	0.5 kV	125 ns	50% duty	3 MHz	TITAN RFQ	
	0.6 kV	125 ns	50% duty	2.2 MHz		
2005/62	4.6 kV	6 ns		1 kHz	ILC	

¹: Magnetically Triggered;

²: Optically Triggered.

M.J. Barnes Kickers for CTF3 & CLIC

Comparison of "Old" & "New" TRIUMF MOSFET Cards

Schematic of "Old" (magnetically triggered) MOSFET Card, with ferrite core for trigger.

Schematic of "New" (magnetically triggered) MOSFET Card, with fiber optic receiver & MOSFET Driver

M.J. Barnes Kickers for CTF3 & CLIC

Summary re Stacked MOSFETs versus Inductive Adder[1]

- Stacked MOSFET circuit has advantage of <u>no output transformer</u>:
 - No contribution, from this source, to pulse flat-top DROOP (specification <±0.25%);
 - No transformer reset required;
 - No contribution, from transformer saturation, to fault current magnitude.
- Inductive adder circuit has advantage of <u>gate circuit</u> being <u>referenced to</u> <u>ground</u>:
 - Relative timing of MOSFET switching is considerably easier;
 - Fast-grading may (or may not) be required for stacked MOSFETs.
- Advantages and disadvantages of both methods:
 - No clear "winner";
 - Further work required to identify best candidate;
 - A work-package, to examine the main disadvantage of the series connected MOSFET topology, is in the final stages of negotiation.

HFBR-2528 Fiber Optic Receiver Delay

Delay of Edges through HFBR-2528 Receiver (various pulse widths, positive, TTL input pulse) with a Reference HFBR-1528 Transmitter

HFBR-1528 Fiber Optic Transmitter Delay

HFBR-1528 Transmitter Delay, measured data sorted on back edge delay, with a "Reference" HFBR-2528 Receiver

M.J. Barnes

Kickers for CTF3 & CLIC

Present Trigger Technique for "New" MOSFET card.

- For the MuLan/MuCap kicker design, which uses the HFBR-2528 fiber optic receivers, the strip-lines were open-circuit (i.e. a capacitive load);
- Hence the timing of only the turn-on command edge was important and this could be set-up using an RC network;
- However, for CTF3 & CLIC (current to be turned on <u>and</u> off), the workability of stacked MOSFETs depends upon minimal pulse width distortion (this is not the case with the HFBR-2528 fiber optic receivers presently used).

Work Package #1: Objectives

- Initial efforts of work package #1 focus on the Stacked MOSFET topology. The optically triggered TRIUMF MOSFET card, with a MOSFET driver on each card, presently seems a better approach than the magnetically triggered circuit.
- Improved triggering techniques are required to satisfy the stringent timing constraints for both turning-on and turning-off the power MOSFETs for both CTF3 & CLIC stripline kickers; this is the main goal of work package #1, dated July 2006.

Work Package #1: Development of Trigger Techniques

- Options for triggering the MOSFETs, so as to minimize pulse width distortion (PWD), that warrant further investigation, are:
- More appropriate fiber optics than the HFBR-1528 & HFBR-2528 (PWD 5 ns to 15 ns measured);
- Using a second ferrite, that is independent of the power supply ferrite, to magnetically couple the trigger signal;
- Magnetically couple the trigger signal through the power supply ferrite and use a "masking circuit" to discriminate the trigger pulse from the charging current.

Conclusions

• A temporary kicker system (ex e+ and e- injection into EPA) is presently installed for the CTF3 CR extraction kicker.

• CIEMAT have designed the strip-line electrodes for a new CTF3 CR extraction kicker: strip-lines to be delivered to CERN mid 2007, with installation at the earliest subsequent opportunity.

• Two solid-state approaches for the CTF3 CR extraction kicker and CLIC kicker have been examined:

- MOSFET inductive adder (SLAC/LLNL);
- Series connected MOSFETs (TRIUMF).
- Both approaches have advantages and disadvantages.

• Means of satisfying the **stringent timing constraints**, of the series connected MOSFETs approach, are being examined; this is the goal of work-package #1, which is in the final stages of negotiation.

Magnetic Force as given by Lorentz Force Law

References

- 1) M.J. Barnes, "CTF3 Strip-line Kicker", slightly modified version of presentation made at CIEMAT, file date May 10 2006, https://edms.cern.ch/document/734146/1
- 2) M. J. Barnes, G. D. Wait, "A 25 kV, 75 kHz, kicker for measurement of muon lifetime", IEEE Transactions on Plasma Science, Vol. 32, No. 5, October 2004, pp1932-1944.
- 3) Agilent: <u>www.agilent.com</u>.
- 4) Directed Energy Inc. (DEI), USA, <u>www.directedenergy.com</u>
- 5) M.J. Barnes, G.D. Wait, "A FET Based mass separator kicker for TRIUMF ISAC project", Proc. of the Seventh European Particle Accelerator Conference (EPAC 2000), 26-30, June 2000, Vienna, Austria, pp2376-2378.
- 6) I. Rodríguez, L. García-Tabarés, F. Toral, A. Ghigo, F. Marcellini, "Design of a Strip-Line Extraction Kicker for CTF3 Combiner Ring", Proc. of the Tenth European Particle Accelerator Conference (EPAC 2006), June 2006, Edinburgh, Scotland.

WP1: Fiber Optic System

A suitable fiber optic system must be capable of:

- Operation over a large dynamic frequency range. The receiver should, ideally, be DC coupled;
- Ideally <u>no output amplifier</u> is necessary, hence output of receiver should satisfy (digital, not analogue ??) :
 - High level output voltage of 4.2 V min.;
 - Low level output voltage is 0.4 V max.
- Fast slew rate of output (to minimize switching delays associated with different threshold levels of the input of the DEIC 420);
- Reliable connector between fiber optic cable and transmitter/receiver;
- Low pulse width distortion (preferably ≤ 0.5 ns for pulse widths of <50 ns to DC).
- Very low temperature coefficient, i.e. minimal change in pulse width, output voltage levels, and slew rate with temperature.

WP1: Dedicated Ferrite-Coupled Trigger

Remove the fiber optic receiver from each card and, instead, trigger the MOSFET driver via a second ferrite:

- The second ferrite would have similar dimensions to the existing power supply ferrite (dimensions 2.4" outside diameter, 1.2" inside diameter and 0.5" high).
- A charge latch circuit similar to that used in previous, magnetically coupled, TRIUMF designs could be used to maintain the required high and low input voltage levels to the MOSFET driver.
- Voltage clamps, with high "off-state" resistance, would be required on the input to the MOSFET driver to ensure the input voltage pulse is ALWAYS in the range: -5 V to Vcc+0.3 V.

WP1: Shared ferrite-coupled trigger & LV power supply

- Remove the fiber optic receiver from each card and, instead, trigger the cards via the existing "power supply" ferrite:
- The "command current pulse" will also provide energy to the on-card DC power supply;
- The "command current pulse" will have a fast leading edge and an RC decay for the falling edge, i.e. as per [5];
- The leading edge of the command current pulse will transfer power to the on-board DC power supply;
- A fast rising edge of the command current pulse will act as an "on-trigger" to the MOSFET driver;
- A fast falling edge of the command current pulse will act as an "off-trigger" to the MOSFET driver;
- The RC decay time will be chosen to be slow enough so as not to appreciably change the magnitude of input voltage to the MOSFET driver. Hence this RC decay does not change the state of the MOSFET driver [5];
- A charge latch circuit similar to that used in previous, magnetically coupled, TRIUMF designs could be used to maintain the required high and low input voltage levels to the MOSFET driver.
- Voltage clamps, with high "off-state" resistance, would be required on the input to the MOSFET driver to ensure the input voltage pulse is ALWAYS in the range: -5 V to Vcc+0.3 V.

Magnetically Coupled Final Stage for MOSFET Kicker

Example pulse patterns for MOSFET Based Kicker

M.J. Barnes Kickers for CTF3 & CLIC

Schematic of "old" TRIUMF MOSFET card

Turn-on command *pulse*:

M.J. Barnes Kickers for CTF3 & CLIC

Schematic of "old" TRIUMF MOSFET card

pg38

Turn-off command *pulse*:

Schematic of "new" TRIUMF MOSFET card

M.J. Barnes

Kickers for CTF3 & CLIC

Comparison of "Old" & "New" TRIUMF MOSFET Cards

Ideally: high current, low inductance, source to rapidly switch MOSFET (to supply, in particular, Miller Charge). Hence "new" card is best candidate; however

	Old Style	New Style
	(Gating via pulse transformer)	(Fiber Optics)
Gate Drive Current	Used to supply up to approximately 3 A.	MOSFET driver capable of supplying 20A peak
Pulse transformer required for	Yes	Indirectly: via DC supply and MOSFET driver
pulse gate-source current		
Parasitic inductance	Leakage inductance of ferrite and parasitic	Very low parasitic inductance between output of
	inductance of primary circuit dominate.	MOSFET driver and gate-source.
		Leakage inductance of ferrite relatively
		unimportant.
Gate drive circuit output resistance	Preferably high so as to act as a current source.	Typically: 0.4 Ω
		Maximum: 0.6 Ω
Voltage clamp required gate-source	Yes	No
Experience	Reliable	Can collapse 1000 V in 3 ns
		(slowed down to reduce RF noise and limit dV/dt
		across off-state cards)
Primary winding	Care taken to minimize propagation delay	Propagation delay through primary winding
	through primary winding so as to minimize	unimportant.
	differences in timing of turn-on command.	
	Current transients, during switching,	Current transients, during switching,
	superimposed on primary "command" pulse	superimposed on primary "command" pulse but
	modify switching.	relatively unimportant.
Fiber optics	No	Yes: spread in delays MUST be compensated for.
		Pulse width distortion will be a problem too.
		More appropriate fiber optics available??

Comparison of MOSFETs

													Rise	Fall	Turn-on	Turn-off		
MOSEET	Constation	Volte	Inuleo		Packago	lar	Idss (25C)	Idee (125C)	Qgd (typ)	Qg (typ)	Coss (nE)		lime (nc)	l ime	delay (ns)	delay (ns)	Qrr	Rds(on)
DE150-102N02	Generation	1000	11	80	гаскауе	lai	[vus-vuss]	1055 (1250)	[0.59055]	(())	(pr)	1 25	4	(115)	(115)	4	(uc)	(011115)
IRFPG30		1000	12	125	TO-247	3.1	100uA	500uA	42nC	80nC		1	24	29	12	89	1.3	
IRFPG40		1000	17	150	TO-247	4.3A	100uA	500uA	65nC	120nC		0.83	33	30	15	100	1.9	
APT1004	4	1000	17.6	180	TO-247		250uA	1mA	18nC	35nC	115	0.68	10	14	12	33	1.65	
IRFPG50		1000	24	190	TO-247	6A	100uA		110nC	190nC		0.65	35	36	19	130	3.5	
					TO-268 &		50uA (80%											
IXFH6N100F (IXYS)		1000	24	180	TO-247	6	Vdss)	1mA	22nC	54nC		0.25	14	14	12	32	0.8	
APT1201R6BVR	5	1200	32	280	TO-247	8A	25uA	250uA	78nC	155nC		0.45	10	15	12	50	7	
APT1201R4BLL	7	1200	36	300	TO-247	12A	100uA	500uA	48nC	91nC	309	0.42	9	23	14	44	7	
APT1001	4	1000	44	310	TO-247		250uA	1000uA	47nC	90nC	360	0.4	16	24	15	64	4.5	
	7	1000	48	300	TO-247	124	10004	50004	52nC	78nC	338	0.42	5	8	10	26	q	
AT THOUSUBLE	,	1000	0	000	10 247	12/1	50uA (80%	5000/1	02110	70110	000	0.42		Ŭ	10	20		
DE275-102N06A		1000	48	375		6A	Vdss)	1mA	30nC	50nC		0.33	2	4	3	5	0.6	
			-				50uA (80%											
DE275X2-102N06A		1000	48	750		6A	Vdss)	1mA	30nC	50nC		0.33	2	4	3	5	0.6	
					TO-268 &													
IXFH12N100F (IXYS)		1000	48	300	TO-247	12A	50uA	1.5mA	42nC	77nC		0.42	10	12	12	31	0.8	
APT1201R2BLL	7	1200	48	400	TO-247	12A	100uA	500uA	59nC	99nC	391	0.31	9	21	14	44	11	
APT10078	7	100	56	400	TO-247	14A	100uA	500uA	59nC	93nC	429	0.31	8	9	9	30	7.87	
							50uA (80%											
DE375-102N10A		1000	60	550		10A	Vdss)	1mA	40nC	90nC		0.23	3	5	5	8	0.6	
	Mar. 00	4000	70			40.4	50uA (80%	4	40-0	00-0	205	0.00	~	_	_	~		4.07
DE375-102N12A	way-06	1000	12	550	1		vass)		4200	9300	305	0.23	<u>ာ</u>	ರ		0	0.6	1.07
APT12067x11	7	1200	72	565	TO-264	184	100114	500uA	105nC	176nC	690	0.22	11	18	19	52	22	
	,	1200			TO-264 &	10/1	1000/1	5000/1	100110	170110	000	0.22		10	10	52	22	
APT12057	7	1200	88	690	TO-247	22A	100uA	500uA	126nC	211nC	830	0.18	12	21	21	58	25.5	
					TO-264 &													
APT10045	7	1000	92	565	TMAX	23A	100uA	500uA	97nC	154nC	715	0.22	5	8	10	30	5.5	
							50uA (80%											
DE475-102N20A		1000	120	600		20A	Vdss)	1mA	70nC	160nC		0.2	5	5	5	5	0.6	
							50uA (80%											
DE475-102N21A	May-06	1000	144	1800		21A	Vdss)	1mA	77nC	160nC	200	0.08	5	5	5	8	0.6	0.41
	_	1.00-			TO 001			1mA (80%	100.0					~ .				
APT12057B2FLL_LFLL	7	1200	88	690	TO-264	22A	250uA	Vdss)	120nC	185nC	770	0.18	20	21	11	36	18	0.57

M.J. Barnes

Kickers for CTF3 & CLIC