Status of the Precision Beam Position Monitor (PBPM) for EUROTeV

L. Soby, I. Podadera Aliseda AB-BI-IP

Goal

Measurement of the beam position and current in the main linac (attached to the quadrupoles) of the next generation colliders (ILC and CLIC) with the specifications:

- Resolution:100 nm.
- Aperture: 4-6 mm.
- Absolute precision: 10 μm.
- Rise time: 15 ns.

Important parameter for the beam-based alignment

PBPM-specifications

EUROTeV	Aperture	4mm
	Resolution	100nm
	Absolute precision	10µm
	Rise time	<15ns
Extended specifications	Dynamic range	±1.5mm (15 bits)
	Linearity error	< 1% (±1.5mm)
	24H stability	1µm
	Droop	< 5%
	Low frequency cutoff	100kHz (3.6% droop, CLIC 58ns pulse)
	High frequency cutoff	30MHz
	CMRR	>90dB
	Bake out temperature	150°C
	Vacuum	10 ⁻⁹ Torr
	Operating temperature	~20°C

Inductive pick-up: basic scheme

The electron beam induces an image current in the surrounding vacuum pipe...

... the beam position (image current distribution) is picked outside the vacuum by the signal combination transformed by current transformers from strip electrodes (inductances L_{Δ}). The transformers are loaded in the secondary by a resistor R_s

... the beam pipe is disrupted by a ceramics insertion in alumina which maintains the vacuum inside...

... a **body** shields the pick-up from environment perturbances...

... the low frequency cutoff is decreased by the addition of a ferrite external to the electrodes...

... the longitudinal impedance at high frequencies and the wakefields are limited by a titanium resistive coating in the internal face of the ceramics. Big enough to avoid signal losses at low frequencies and low enough for the impedance budget of the accelerator.

18-12-2006

Inductive pick-up: basic scheme

Low cutoff (difference signal)

Low cutoff (sum signal)

18-12-2006

PBPM planning

According to the schedule!

The design

From...

IPU (CTF3)

M. Gasior, An Inductive Pick-Up for Beam Position and Current Measurements, CERN-AB-2003-053-BDI

PBPM

Final design

Final design

The electrodes

Design challenges

Mechanics

• Sputtering of the ceramics:

- Very small diameter.
- Deposition thickness of the coating proportional to distance titanium wire-ceramics wall: uniformity problems. Last tests 0.2 μm in the edges and 1.5 μm in the center.
- Work developed by H. Neupert and S. Calatroni.

• Vacuum chamber:

- Welding of all the pieces by electron beam with demanding accuracy (T. Tardy, L. Leggiero).
- Brazing of the small bellow.

Tolerances imposed to the most important parts:

- Three reference planes in the body machined with at least 10 μm precision from the axis of the body. Very good precision of the mechanical center from the reference planes even without metrology.
- The mechanical axis of the electrodes is coaxial in 5 μm with the axis of the body. The offset between the mechanical and "electrical" center is minimized.
- Two positioning pins (10 μ m) in each reference plane.
- Good coaxility coating-ceramics-electrodes to define a constant impedance along the coaxial line.
- Great help from V. Maire, B. Favrat for the design and P. Frichot for the manufacturing.

Design challenges

• Vacuum flanges:

- To our knowledge, CLIC flanges are not yet defined.
- Possible assembly in different machines to take into account (CTF3, ATF-2).
- Small flange in order to have small electrodes and pick-up. In addition it minimizes the cavity and resonances.
- Solution: small helicoflex seal (Ø7.7 x Ø10.9 mm) with screws adapted to standard CF-16.

• Use of SMC connectors instead of SMA.

PBPM electronics

PBPM front-end electronics

- Test IPU electronics and Passive front-end hybrid (radiation hard) to generate Δ and Σ signals (BW=100kHz-30MHz).
- Difference must have CMRR >95 dB (100nm over 6mm) to minimize offset error.
- ILC version must include 10MHz Bessel filter to dilute 1ps bunch to ~60ns.
- Fast 200MS ADC, 12 or more bits (or oscilloscope).

CMRR error

18-12-2006

Resolution limitation

- CMRR_{3mm} = 20 log(6mm/100nm) ~ 95 dB.
- Thermal noise from the resistors:

$$\Delta V_{noise} = \sqrt{4kTR_s\Delta f} = 5\ \mu\text{V}$$

(with simulated sensitivity of 0.125 nm and for CLIC pulse):

$$\Delta x_{noise} = k_x \frac{\sqrt{2}\Delta V_{noise}}{V_{pulse}Att_{cable}} \approx 0.353 nm$$

• Quantization error:

(number bits required)

$$B = \log_2 \left(\frac{2 \cdot \text{Dynamic Range}}{\text{Resolution}} \right) = \log_2 \left(\frac{2 \cdot 1.5 \text{ mm}}{100 \text{ nm}} \right) \approx 15 \text{ bits}$$
$$\Delta x_{\text{ADC}} = k_x \frac{1}{\sqrt{2} \cdot 2^B} = 2.69 \text{ nm}$$

Total rms error (without CMRR) = 2.7 nm

Electromagnetics simulations: validation and optimization of the design

Beam position linearity

HFSS model

Wire radius 0.1 mm

 Position evaluated at a single frequency 10 MHz

- Primary load resistance of 100 mΩ for the 4 electrodes.
- Complex substraction and sum of the Sparameters.
- •50 Ω wire system gives worse accurate results in terms of linearity.

18-12-2006

Position linearity

Horizontal movement of a thin wire

18-12-2006

Low frequency cut-off

Electrical model

 $f_{\mathsf{L} \wedge}$

Transformer: 30 turns $L_{A} = 20 \text{ nH}$

HFSS

Frequency [MHz]

Low frequency cut-off

 $f_{\mathsf{L}\Delta}$

Microwave

Time domain response

Time domain response

ILC bunches

18-12-2006

PSPICE model

Developed from the model proposed by M. Gasior

HFSS model

Titanium coating included

$$R_{sq} = R_{Ti} \frac{2\pi r_{i,ceramics}}{L_{ceramics}}$$

Optimization of:

•Internal diameter of the electrodes.

•Thickness ceramics.,

•Length ceramics-electrodes.

•Value of resistive coating.

Coating resistance

18-12-2006

Length of the electrodes

The smaller the length the higher the high frequency cutoff.

But... low frequency cutoff increases with smaller electrode lengths...

$$L_{\Delta} \approx 2l \cdot 10^{-7} \left(\ln \left(\frac{2l}{B+C} \right) - \ln \alpha + \frac{1}{2} \right)$$
 [H]

compromise...

The length does not seem to affect too much the longitudinal impedance oscillations.

Distance ceramics-electrodes

Impedance oscillations are damped for spacing between the ceramics and the electrodes below 0.5 mm but...

The helicoflex seal, the bellow and other mechanical components of the vacuum chamber limit the gap available.

Longitudinal impedance (PSPICE model)

PBPM

IPU-CTF3

The increase in line impedances in the PBPM with respect to the simulated IPU version provokes some small dumps in the longitudinal impedance of the PBPM.

Preliminary assembly

18-12-2006

Test bench design

Test bench measurements

- Resolution with CLIC and ILC type beams (1.5A / 0.1A, 60ns pulse). Use of a network analyzer to obtain the information of the real and imaginary part (sinusoidal signals).
- Sensitivity and Linearity (in both planes and in diagonal).
- Electrical offset (with respect to the mechanical center).
- Position stability with respect to temperature fluctuations 15-25°C.
- 24 hours stability.
- Long term stability.
- Longitudinal impedance (50 Ω setup).

Final design

Test bench

Stable environment (active isolation, <100nm)

Vibration monitoring (geophone)

Temperature

monitoring

(thermistor)

•Labview automatic control for the measurements.

•GPIB (Agilent 34410A and HP8753C), USB (motors).

•Wind shield.

Support simulations

Wire support- 4 feet (WPS resolution ~1µm)

Assuming honeycomb table as a fixed reference

Preparation tests at CTF3 (autumn 2007)

Tests at CTF3

nstallation of 3 PBPM in CTF3 in autumn 2007 to evaluate their resolution (disentangle position and angle jitter).

Each PBPM with individual micromovers.

2 proposed locations:

Other issues

Not addressed in this talk:

•Coupling between electrodes. Phase offset between electrode signals. Evaluation during the test bench measurements.

•Influence of the magnetic field from near quadrupoles. So far not a problem in CTF3 but for CLIC?...

Acknowledgments

Many thanks to all the people that help in this project!

R. Boudot, M. Gasior, F. Guillot-Vignot, V. Maire, B. Favrat, H. Mainaud-Durand, H. Neupert, S. Calatroni, T. Tardy, L. Leggiero, P. Frichot, T. Kroyer, F. Caspers, J. Belleman, S. Redaelli, J-M. Wickham, P. Odier...