Results from recent 30 GHz and X-band Accelerating Structure Tests

J. Alberto Rodriguez

Contents

- The Structures tested
- Material
- Frequency
- Breakdown rate
- Conclusions

The Structures tested

The Structures tested

	HDS 11	HDS 60	HDS 60 Small	HDX 11 Small
Assembly	Clamped Quadrants			
Number of cells	11	60	60	11
P _{INC} [MW] @ E _{1st} = 150 MV/m	98		54	370
E _{SURFACE} [MV/m] @ E _{1st} = 150 MV/m	268		252	252
a [mm]	1.9		1.6	

Other Structures Tested			
_	2 x Circular Mo		
30 GHz	1 x Circular W		
	2 x Circular Cu		
_	1 x Circular Mo		E
11.4 GHz	1 x Circular W		
		-	

	Circular Structures @ 30 GHz
Assembly	Clamped or brazed cells
Number of cells	30
P _{INC} [MW] @ E _{1st} = 150 MV/m	54
E _{SURFACE} [MV/m] @ E _{1st} = 150 MV/m	330
a [mm]	1.75

Material

\diamond	HDS 60 Cu
0	HDS 11 AI
∇	HDS 11 Ti
Δ	HDS 11 Mo

	HDS 11	HDS 60	HDS 11	HDS 11
	Ti	Cu	Mo	Al
E _{1st} [MV/m] @	63	61	51	51
70ns, BDR=10 ⁻³		(97%)	(81%)	(81%)
E _{1st} [MV/m] @	36	42	42	36
70ns, BDR=10 ⁻⁶		(117%)	(117%)	(100%)
P _{INC} / C [MW/mm] @	1.72	1.61	1.13	1.13
70ns, BDR=10 ⁻³		(94%)	(66%)	(66%)
P _{INC} / C [MW/mm] @	0.56	0.76	0.76	0.56
70ns, BDR=10 ⁻⁶		(136%)	(136%)	(100%)
Slope [MV/decade]	9.0	6.2	3.0	5.0
k in $P T^k = CTE$	-0.49	-0.50	-0.60	-0.71

Material

- Slopes seem to be different for different materials
- Therefore, the relative performance of the different materials depends on the desired breakdown rate
- In particular at BDR = 10⁻³ (well characterized experimentally), Ti is the best performer
- The performance of Ti could be even better than shown (a degradation of the performance was observed while conditioning)
- A different material ordering was observed in other experiments (brazed circular copper, clamped circular molybdenum)
- The pulse length dependence seems to be stronger than the traditional 1/3 even for copper
- The relative performance of the materials does not depend on the chosen pulse length (in the range it was measured)

Frequency

	HDX 11 Cu Small
0	HDS 60 Cu Small

	HDS 60 Cu Small	HDX 11 Cu Small
E _{1st} [MV/m] @ 70ns, BDR=10 ⁻³	75	74
E _{1st} [MV/m] @ 70ns, BDR=10 ⁻⁶	53	57
Slope [MV/decade]	7.2	5.5
k in P T ^k = CTE	-0.39	-0.73

Frequency

- Slopes are similar in both structures
- Two other pairs of similar structures have been tested before at different frequencies
- The pulse length dependence seems to be the traditional 1/3 in the 30 GHz structure but steeper in the 11.4 GHz structure
- A degradation of the HDX structure was observed during the conditioning that could also explain the stronger than usual pulse length dependence

Breakdown rates @ 70 ns

HDS 11 AI: Breakdown rates

HDS 11 AI: Breakdown rates

With free linear dependence @ 70nsLinear model Poly1: $f(x) = p1^*x + p2$ Coefficients (with 95% confidence bounds):p1 = 0.1966 (-0.02601, 0.4193)p2 = -13.02 (-24.08, -1.953)

Goodness of fit: SSE: 0.3464 R-square: 0.8783 Adjusted R-square: 0.8175 RMSE: 0.4162

Goodness of fit: SSE: 0.3266 R-square: 0.9242 Adjusted R-square: 0.8863 RMSE: 0.4041 With fixed (to the average of the two freefits) linear dependence @ 70nsLinear model Poly1: $f(x) = p1^*x + p2$ Coefficients (with 95% confidence bounds):p1 = 0.2006 (0.1897, 0.2115)p2 = -13.22 (fixed at bound)

Goodness of fit: SSE: 0.3475 R-square: 0.878 Adjusted R-square: 0.878 RMSE: 0.3403

With fixed (to the average of the two free
fits) linear dependence @ 40nsLinear model Poly1:
 $f(x) = p1^*x + p2$ Coefficients (with 95% confidence bounds):
p1 = 0.1756 (0.1664, 0.1848)
p2 = -13.22 (fixed at bound)

Goodness of fit: SSE: 0.3279 R-square: 0.9239 Adjusted R-square: 0.9239 RMSE: 0.3306

HDS 11 AI: Pulse length dependence

HDS 11 AI: Pulse length dependence

With fixed power dependence 1/3 General model Power1:

 $f(x) = a^*x^b$

Coefficients (with 95% confidence bounds):

- a = 44.72 (22.46, 66.99)
- b = -0.333 (fixed at bound)

Goodness of fit: SSE: 10.25 R-square: 0.6648 Adjusted R-square: 0.6648 RMSE: 2.263 With free power dependence General model Power1: $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 205.4 (-2026, 2437) b = -0.7086 (-3.427, 2.01)

Goodness of fit: SSE: 2.322 R-square: 0.924 Adjusted R-square: 0.8481 RMSE: 1.524

HDX 11 Cu: Pulse length dependence

Pulse length dependence measurements Description of different measurements

• Tscope_1, Vmax_1, Vtop_1:

- The pulse length (Tscope_1) was changed from 30.5 ns to 176 ns. Note that all the pulse lengths used are those automatically measured by the scope in the control room.

- For each pulse length, the power was slowly ramped up until a breakdown occurred (typically it took ~ 1 minute each time the power was ramped up).

- At that point, the power was reduced without changing the pulse length and after waiting for 20 seconds before putting power in the structure.

- This process was repeated for 15 minutes without taking any data.

- Afterwards, five more ramp ups were performed writing down the maximum power read by the peak power meters (Vmax, Vtop)

- Vmax_1 and Vtop_1 are the maximum values read by the peak power meters in those five ramp ups.

• Tscope_2, Vmax_2, Vtop_2:

- Vmax_2 and Vtop_2 are the average values read by the peak power meters in the five ramp ups described before.

• Tscope_3, Vmax_3, Vtop_3:

- The power (Vtop_3) was changed from 54.5 MW to 134.5 MW. Note that the lowest power was defined by the maximum pulse length reachable without deteriorating the pulse shape (~200 ns).

- For each power, the pulse length was ramped up until a breakdown occurred (typically it took ~ 1 minute each time the pulse length was ramped up).

- At that point, the pulse length was reduced without changing the power and after waiting for 20 seconds before putting power in the structure.

- This process was repeated for 15 minutes without taking any data.

- Afterwards, ten more ramp ups were performed writing down the maximum pulse length read by the scope (Tscope)

- Tscope_3 is the maximum value read in those ten ramp ups.

• Tscope_4, Vmax_4, Vtop_4:

- Tscope_4 is the average value read in the ten ramp ups described before.

HDS 11 Ti: Breakdown rates

HDS 11 Ti: Breakdown rates

With free linear dependence and excluding the two points with the highest BDR @ 70ns Linear model Poly1: $f(x) = p1^*x + p2$ Coefficients (with 95% confidence bounds): p1 = 0.1114 (0.07064, 0.1522)

p2 = -9.956 (-12.46, -7.448)

Goodness of fit: SSE: 0.1845 R-square: 0.908 Adjusted R-square: 0.8896 RMSE: 0.1921

HDS 11 Ti: Pulse length dependence

HDS 11 Ti: Pulse length dependence

With fixed power dependence 1/3 General model Power1:

 $f(x) = a^*x^b$

Coefficients (with 95% confidence bounds):

- a = 138.2 (131.4, 145)
- b = -0.3333 (fixed at bound)

Goodness of fit: SSE: 13.59 R-square: 0.8554 Adjusted R-square: 0.8554 RMSE: 1.649 With free power dependence General model Power1: $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 258.2 (97.9, 418.6) b = -0.4864 (-0.6386, -0.3341)

Goodness of fit: SSE: 4.621 R-square: 0.9508 Adjusted R-square: 0.9386 RMSE: 1.075

HDS 11 Mo: Breakdown rates

HDS 11 Mo: Breakdown rates

Goodness of fit: SSE: 0.4041 R-square: 0.8807 Adjusted R-square: 0.8409 RMSE: 0.367

With free linear dependence @ 40ns Linear model Poly1: $f(x) = p1^*x + p2$ Coefficients (with 95% confidence bounds): p1 = 0.2224 (0.009202, 0.4355) p2 = -16.68 (-28.88, -4.474)

Goodness of fit: SSE: 0.3726 R-square: 0.9097 Adjusted R-square: 0.8645 RMSE: 0.4316 With fixed (to the average of the two free fits) linear dependence @ 70ns Linear model Poly1: $f(x) = p1^*x + p2$ Coefficients (with 95% confidence bounds): p1 = 0.3301 (0.3215, 0.3387)p2 = -20.14 (fixed at bound)

Goodness of fit: SSE: 0.4919 R-square: 0.8548 Adjusted R-square: 0.8548 RMSE: 0.3507 <u>With fixed (to the average of the two free</u> <u>fits) linear dependence @ 40ns</u> Linear model Poly1: f(x) = p1*x + p2Coefficients (with 95% confidence bounds): p1 = 0.2827 (0.2698, 0.2956) p2 = -20.14 (fixed at bound)

Goodness of fit: SSE: 0.6503 R-square: 0.8424 Adjusted R-square: 0.8424 RMSE: 0.4656

HDS 11 Mo: Pulse length dependence

HDS 11 Mo: Pulse length dependence

With fixed power dependence 1/3General model Power1: $f(x) = a^*x^b$ Coefficients (with 95% confidence bounds): a = 49.66 (33.97, 65.36) b = -0.3333 (fixed at bound)

Goodness of fit: SSE: 5.078 R-square: 0.7946 Adjusted R-square: 0.7946 RMSE: 1.593 Goodness of fit: SSE: 0.1248 R-square: 0.9949 Adjusted R-square: 0.9899 RMSE: 0.3533