Beam Profile Measurements @ CTF3 Past, Present and Future

1. Transverse Beam Profiles

- General considerations
- OTR and SR as base for measurements
- Layout of the optical system (optics, material choice, camera,...)
- MTVs and Spectrometer Monitors (Past, Present, Future)
- Beam Halo Measurements
- Limitations

2. Longitudinal Beam Profiles

- Why do we care ?
- How to do the measurement ?
- Layout of long optical lines
- Results and Limitations
- Future Installations

3. Time-resolved Energy Measurements

- How to do the measurement ?
- SEM Grid
- Segmented photomultiplier
- Segmented Dump

CLIC meeting, 16.3.2007

CTF3 Diagnostic Requirements

MTV's	Beam energy (MeV)	Beam charge (nC)	Beam size (mm)	Screen size (mm)	Spatial resolution (mm/pixel)
CL.MTV0165	0.140	10-7500+	>1	> Ø 50	0.2
CLS.MTV0440	20	7.5-5600*	>1	100x50	0.25
CL.MTV0500	20	-	>0.8	> Ø 30	0.1
CL.MTV1030	70	_	>0.4	> Ø 30	0.1
CLS.MTV1050	70	-	>1	100x50	0.25
CL.MTV0435	150	-	>0.15	>Ø 30	0.1
CLS.MTV0455	150	-	>1	100x50	0.25

⁺ Assuming commissioning conditions @100mA,100ns and nominal conditions @3.5A,1.56ms

* Assuming 25% beam loss in the 3GHz bunching mechanism

CLIC meeting, 16.3.2007

λ (nm)			ım)	
Electrons energy (MeV)	0.14	20	40	150
[400,600]nm OTR photons / electron	7.2 10-4	7.3 10 ⁻³	8.6 10 ⁻³	1.1 10 ⁻²
[400,600]nm OTR photons on camera	4 10 ⁸	6 10 ¹⁰	7 10 ¹⁰	9 10 ¹⁰

CLIC meeting, 16.3.2007

E. Bravin, T. Lefevre

Examples from CTF3

<u>Calculations for the injector</u> <u>profile monitor</u>

I = 5.4A, E = 140keV, σ = 1mm					
t_p	Т (°С) @ 10Нz		T (°C) @ 50Hz		
(µs)	С	Al	С	Al	
0.2	103	83	164	132	
0.8	272	194	558	421	
1.56	440	434	1003	Х	

<u>Calculations for the linac</u> <u>profile monitors</u>

$I = 3.5A$, $E = 150MeV$, $t_p = 1.56\mu s$					
σ (mm)	Т (°С) С	@ 10Hz Al	T (°C) @ C) 50Hz Al	
0.25	1730	X	2250	X	
0.5	-	X	-	Х	
0.6	-	510	-	650	

- Carbon screens stand the full beam intensity for the maximum repetition rate at every energy.
- Some alternatives for reduced bunch charge / lower repetition rate.

E. Bravin, T. Lefevre

Past Installations

CLIC meeting, 16.3.2007

Present Layout

Design dominated by spatial constraints

Existing vacuum tanks used

Shielding of equipment

CLIC meeting, 16.3.2007

Simulation of OTR in ZEMAX

Maximum at $\theta_{max} = 1/\gamma$ \square Used in ZEMAX.

25 MeV	2.29 °
80 MeV	0.73°
160 MeV	0.36°

CLIC meeting, 16.3.2007

Lens Configuration - ZEMAX

Installed Screens at CTF3

Linac (Emittance)

Backward OTR screens

- Two screens at 20° (observation at 40°)
- 10μm thick Al-foil (20% reflectivity)
 - 100μm thick C(SC fbil (~26% reflectivity)
- Active Size : Ø

<u>Spectrometer</u> (E, ΔE)

Backward OTR screen

- Fixed screen tilted at 45° (observation at 90°) •
- 10µm thick Al-foil (~90% reflectivity)
- Active Size : 10cm x 5cm •

Linac: Radiation Issues

- CCD destroyed within weeks
- Lens darkening
- Damage to valves, cables and connectors

E

Solution: Parabolic Screen

Proc. EPAC 06 Standard for future installations.

Æ

Spectro Tank: New Layout

. 🍋

- Cheap, simple design,
- Screen can be aligned ex situ.

CLIC meeting, 16.3.2007

CALIFES (guess !?)

Quad scan simulation - Waist

Spectrometer line

 $\sigma_{11} = \langle x^2 \rangle$ vs. Quad gradient

Intensity between 10⁸ - 10¹¹ e⁻ Spot between 0.01 et some mm²

W. Farabolini

CCD camera 1/3'' (4.8 x 3.6 mm²) Frame grabber 416 x 312 pixels (pixels of 11.5 μm)

Position	After canon	After triplet	After Dipole
Aim	Check beam position and dimensions	Emittance measurement	Energy dispersion measurement
Specifiations	None	Resolution $\leq 20 \ \mu m$ size 10 x 10 mm ²	Resolution $\Delta p/p \le 1\%$ Precision < 2% of nominal energy
Energy	5 MeV	177-200 MeV	177-200 MeV
Beam size	2-3 mm rms	50 µm (waist) – 3 mm	20 x 0.5 mm
Magnification	0.2	1.73 <u>and</u> 0.36	0.18
Screen type	Phosphor or YAG	OTR and Phosphor	Phosphor
Resolution pattern	Engraved on screen	Movable or on dedicated optical line	Engraved on screen

W. Farabolini

How to Decide for a Screen...

Phosphor or Chromox

- Powder deposition (Y₂SiO₅:Ce,Tb) on substrate or Al+Ce,
- Omni directional emission,
- High gain (P47: 630 ph/e⁻ @ 15 keV)
- Monochromatic spectrum,
- Saturation and non-linear,
- Can be damaged if $> 1 \text{ C/cm}^2$,
- Remanence $(0.1 \ \mu s some \ ms)$,
- Spatial resolution is function of thickness.

- Thin foil of Al, C, Si, SiC,...
- Narrow emission angle $(2/\gamma)$,
- Weak gain (0.015 ph/e⁻ @ 200 MeV)
- Large spectrum,
- Very robust (see: thermal effects),
- No remanence,
- Very good spatial resolution.

New Chamber Layout

CLIC meeting, 16.3.2007

Halo Monitor

Meas. Sci. Technol. 17 (2006) 2035–2040

Under investigation:

- 2D PMT setup
- SpectraCAM CID camera
- Micro Mirror Array

CID Technology

SpectraCAM System

Sealed camera head including read-out electronics

Water cooling system and integration electronics

Halo Measurements

Callibration: Opacity

Phantom image without mask

Phantom image with mask

Factor 100 higher dynamic range.

Proc. EPAC04

CLIC meeting, 16.3.2007

Future Perspectives

1. SpectraCAM XDR from Thermo

2048² pixels

2. Micro Mirror Array from Vialux

1024 x 768 pixels (XGA)

USB Interface

high-speed port 64-bit @ 120 MHz for data transfer up to 9.600 full array mirror patterns / sec (7.6 Gbs)

CLIC meeting, 16.3.2007

Dynamic Range of New System

CLIC meeting, 16.3.2007

1. Transverse Beam Profiles

2. Longitudinal Beam Profiles

3. Time-resolved Energy Measurements

CLIC meeting, 16.3.2007

- Transmit the light using telescopic arrangements.
- Optimize between collecting, transmitting and demagnifying optics.
- Minimize the number of optical elements.
- Optimize optical resolution.

Used for...

- Monitoring of phase switch using sub-harmonic bunchers
- Monitoring of the RF bunch combination
- Monitoring of track length modification with a wiggler
- Bunch length measurements (compare to rf pickup)

J. of Instr. **1** P09002 (2006) CLIC-Note 681

Limitations

- Both, light intensity <u>and</u> aberrations at limit.
- Even longer lines (CR) <u>no feasible</u> <u>option</u> with present layout.

Will now be used as Cherenkov detector.

• Test with optical fiber not successful.

Building,...not year !

Outlook: 2007

1. Transverse Beam Profiles

2. Longitudinal Beam Profiles

3. Time-resolved Energy Measurements

CLIC meeting, 16.3.2007

Time Resolved Measurements

In 2003: SEM-Grids (two were installed), 2004 with modifications.

SEMgrid profiles ~ 1 A – 320 ns – 25.5 MeV

Problems at higher beam charges 2000 1500 1000 Output Signal (V) 500 0 -500 -1000 -1500 3.5A, 1.5 µs -2000 500 1000 1500 2000 0 Time (ns)

CLIC meeting, 16.3.2007

Time Resolved Measurements

- Good time resolution [ns]
- Amplified to get good s/n ratio
- Screen quality / optics acceptance

- 32 channel segmented PMT from Hamamatsu Corp.
- OTR light from AI screen
- Use beam splitter

Seg. Dump: ∆p/p (t)

Bandwidth limited (parasitic noise)Destructive method (long term reliability)Non-radiation hard insulator

T. Lefevre

Seg. Dump: New Layout

CLIC meeting, 16.3.2007

Seg. Dump: New Installation, G. 4

Ready for this run.

T. Lefevre

CLIC meeting, 16.3.2007

Carsten P. Welsch – AB/BI/PM

Conclusion

- Transverse profile monitors can be designed for a wide range of specifications,
- Beam halo monitoring showed promising results,
- Streak camera proved powerful tool for longitudinal beam profile measurements,
- Segmented monitors in spectrometer lines now finalized.

