A few considerations on breakdown phenomena

- Some "anecdotes"
 - Beta values from SEM
 - Taylor cones
- Temperature rise calculations
 - 1D, 2D, 3D heating
 - Heating of tips by field emission currents
- (Nervous...) breakdown rate

1

From Gonzalo Arnau Izquierdo

Comparison of cones in HDS11 Ti and Mo disc structure.

CLIC meeting 23.3.2007

Beta calculations from SEM observation - Ti

CLIC meeting 23.3.2007

Beta calculations from SEM observation - Mo

- The "cones" might be the result of the E field pulling over the molten metal. Models of this process exist in the literature.
- When a molten metal is pulled with an electric field, the metal surface is deformed. The resulting shape is due to the balance between the electrostatic force and the surface tension.
- At the highest field the limiting shape is conical, with an half-opening angle of 49.3 degrees (Taylor cone, Proc. Roy Soc. A 280 (1964) 383).
- This shape is independent of the material. When further increasing the field, ion emission starts with a jet. Locally, the atoms binding energy is overcome by electrostatic forces.
- The shape and dynamics of the jet depend on viscous forces
- This process is used in so-called Liquid Metal Ion Sources (for example Cs)

Taylor cones - images

(From Driesel et al.J. Vac. Sci. Technol. B 14 (1996) 3367) - AuGe alloy

- Shape with minimal ion emission (angle close to theoretical value) – left
- Shape with strong ion jet emission right. Ion current 95 µA, Field 6.8 kV / 1.5 mm, estimated jet diameter 175 nm.
- \Rightarrow flux = 6 * 10¹⁴ ions/sec
- \Rightarrow equivalent pressure = 2.5 bar

• Formation of instability waves on a flat molten surface (He et al. J. Appl. Phys. 68 (1990) 1475

Seems slow compared to CLIC situation

 Growth time of cones (Suvarov et al. J. Appl. Phys. D 33 (2000) 1245) – Mercury at 240 MV/m applied field

Figure 2. The surface time evolution; initial form is Gaussian with $\lambda = 4 \ \mu m$, $h = \lambda/10$. The surfaces are consecutively represented at time: 0, 0.56, 0.73, 0.81, 0.83 and 0.85 μ s.

Figure 3. The surface time evolution; initial form is Gaussian with $\lambda = 4 \ \mu m$, $h = \lambda$. The surfaces are consecutively represented at time: 0, 0.048 and 0.057 μ s.

Growth time can be very fast depending on starting conditions

• Here starts the main part of the talk

- 1D, 2D, 3D time dependent heating
 - Relevant for the discussion on breakdown limit
- Heating of tips by field emission currents
 - Relevant for the discussion on breakdown probability

- The breakdown limit of materials in RF tests is observed to follow the dependence: $P\tau^a$ with a=1/3 for copper and a=2/3 for molybdenum
- Is there any intrinsic material dependence? Heat flow equation:

$$\nabla^2 T + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

- With: k = thermal conductivity, $\alpha = k/(c^*\rho)$, c = specific heat, ρ = density
- In-time dependent calculations the distinction between a "fast" and "slow" regime is based on the diffusivity time $\tau_D = R^2/\alpha$. *R* is the linear scale of the phenomena that are under consideration

1D, 2D, 3D heating profiles inside a solid, or over a semi-infinite solid

- Clockwise:
- 1D heat flow → plane source gives square-root time dependence
- 2D heat flow \rightarrow line source
- 3D heat flow \rightarrow point source

CLIC meeting 23.3.2007

From Alessandro Bertarelli: 2µm x 2µm heat source

- Field emission currents heat a (conical) tip by Joule effect. The tip is assumed to have a fixed temperature at its base and have a temperature gradient along its height.
- If the resistivity is considered temperature-independent, a stable temperature is achieved (Chatterton Proc. Roy. Soc. 88 (1966) 231
- If the resistivity (and the other material parameters to a lesser extent) is temperature dependent, then when it increases there is a larger power dissipation, resulting in a further increase in temperature and so on (Williams & Williams J. Appl. Phys. D 5 (1972) 280).
- Below a certain current threshold, a stable regime is reached
- Above the threshold, a runaway regime is demonstrated

Simulation for Mo cone: diameter 20 nm, beta = 30

CLIC meeting 23.3.2007

Diameter 20 nm, E=374 MV/m, current = 0.028 A

Diameter 2000 nm, E=226 MV/m, current = 2.8 A

CLIC meeting 23.3.2007

- The current threshold for runaway depends on the diameter of the cone
- The time constant appears to depend on the (diameter)² of the cone
- The final temperature (if stable) depends on (thermal conductivity)-2
- The rate of temperature increase is (time)^{0.5} below runaway
- The rate of temperature increase depends on (thermal conductivity)^{-0.5} (???)
- The dependences on the electrical conductivity are the same as for the thermal conductivity

• Is it possible to model the breakdown rate probability starting from simple phenomena?

- The breakdown probability: $P(x_1, x_2, ..., x_n) = f(x_1)f(x_2)...f(x_n)$ ۲
- Where x_i might be E, τ or a even a combination of these or other physical ۲ quantities.
- I make the assumption that the ignition of a breakdown is due only to gas ۲ ionisation by electrons. A breakdown is of course an ionisation cascade
- I assume that the probability of igniting a cascade depends linearly on the ۲ amount of gas available and on the primary electron current
- In this case:

$$P_{breakdown} \propto I_{electrons} \, pressure_{gas}$$

- Normalisation should of course be applied ۲
- Where do the electrons and the gas come from?

• The electron current is given by the standard Fowler-Nordheim equation:

$$I_{electrons} = FN(\beta E)$$

FN(\beta E) = Const * (\beta E)^2 exp(-\beta \beta \beta E)

- The constant includes the emitter area
- The gas molecules that get ionised (and allow me this far-fetched assumption!) are indeed the metal vapours created at the tip of the emitters, because of Joule heating by the F-N current.
- It is very difficult to use the full heating model seen before. I made the very crude assumption that the temperature grows with (time)^{0.5} and scales inversely with the (thermal conductivity)^{0.5}.
- The vapour pressure is then given by:

$$p = p_0 \exp(\frac{-H_0}{RT})$$

• Where H_0 is the heat of vaporisation and R the gas constant. p_0 is a normalisation factor, there is a ratio of approximately $10^{1.5}$ between Mo and Cu

• All this gives (k is the thermal conductivity, τ the length of the RF pulse):

$$P_{breakdown} \propto I_{FN}(\beta E) * p_0 \exp(\frac{-H_0 k^{0.5}}{C \tau^{0.5} J_{FN}^2})$$

• Taking the Log₁₀, and applying a single proportionality constant for all the multiplicative factors (only the exponential part of the F-N equation is used):

$$Log(P_{breakdown}) = A + p_0 + 2Log(\beta E) - \frac{B}{\beta E} - \frac{H_0 k^{0.5}}{C \tau^{0.5} J_{FN}^2}$$

• Where *A*, *B*, *C* are fit to the experimental data (and include for example the ionisation cross section, the field emitter area, the probability normalization...)

• $\beta = 30, k = 138 \text{ Wm}^{-1}\text{K}^{-1}, p_0 = 10^{14.5} \text{ mbar}, H_0 = 598 \text{ kJ/mol}$

Keeping the same fit parameters and comparing to Cu data, 30 GHz

•
$$\beta = 45$$
, $k = 400$ Wm⁻¹K⁻¹, $p_0 = 10^{12}$ mbar, $H_0 = 300$ kJ/mol.

Letting free the F-N fit parameters and comparing to Cu data, 30 GHz

• B doubles and A increases of 6 units

Conclusions

