A high brightness X-band photoind A concept and related betaler bands censilado laoigolondost betaler ban

Massimo Ferrario INFN-LNF

Short Wavelength SASE FEL Electron Beam Requirement: High Brightness $B_n > 10^{15} A/m^2$

R. Saldin et al. in *Conceptual Design of a 500 GeV e+e- Linear Collider with Integrated X-ray Laser Facility*, DESY-1997-048

Short Wavelength SASE FEL Electron Beam Requirement: High Brightness $B_n > 10^{15} A/m^2$

Bunch compressors (RF & magnetic)

Laser Pulse shaping Emittance compensation Higher peak field on the cathode (X_band)

Emittance versus rise time

EMITTANCE BEHAVIOUR FORESEEN BY SIMULATIONS FOR DIFFERENT PULSE SHAPES

Rise time measurements for long pulse 15 ps

- Scaling the pulse length the ratio between the rise time and the pulse duration is constant.
- With this length the rise time is 1.5 ps

The SPARC Emittance Meter

Gun and emittance meter in the SPARC bunker

This is not a simulation

QuickTime™ and a Cinepak decompressor are needed to see this picture.

This is not a simulation

QuickTime™ and a Cinepak decompressor are needed to see this picture.

FLAT TOP: Comparison with Parmela Simulation

Uniform transverse beam: $\sigma_r = 430 \ \mu m$

Electron beam

Energy = 5.5 MeV Energy spread = 2.66% Charge = 700 pC (ad inizio turno; alla fine era 620 pC) Phase = +8 deg

Laser

FWHM = 6 ps Rise Time < 1.5 ps rms spot size = 420 µm

Scaling the SPARC design from S-band to X-band

 $\frac{\lambda_{12 \text{ GHz}}}{\lambda_{3 \text{ GHz}}} = 0.25$

Rosenzweig and Colby, Charge and Wavelength Scaling of RF Photoinjector Designs, Advanced Accelerator Concepts, AIP Conf. Proc. 335 724 (1995)

X-band Split Photoinjector (scaling + fields optimization) $E_p=480 \text{ MV/m}$, B=0.575 T, $E_{tw}=68 \text{ MV/m}$, Q=0.25 nC, L=2.5 ps, R=0.25 mm, $\epsilon_{th}=0.15 \text{ mm-mrad}$

T=158 MeV , **I=90 A** , ε_n =0.27 mm-mrad, $\Delta \gamma / \gamma$ =0.6% B_n = 2.5 10¹⁵ A/m²

$E_p=350 \text{ MV/m}$, B=0.435 T, $E_{tw}=56 \text{ MV/m}$, Q=0.20 nC, L=4.2 ps, R=0.31 mm, $\varepsilon_{th}=0.19 \text{ mm-mrad}$

T=130 MeV , **I=50 A** , ε_n =0.25 mm-mrad, $\Delta \gamma / \gamma$ =0.6% B_n = 1.5 10¹⁵ A/m² **E**_p=350 MV/m , B=0.435 T , E_{sw}=52 MV/m , **Q=0.20 nC** , L=4.2 ps , R=0.31 mm , ϵ_{th} =0.19 mm-mrad

T=43 MeV , **I=50 A** , ε_n =0.25 mm-mrad, $\Delta \gamma / \gamma = 0.5\%$, B_n = 1.5 10¹⁵ A/m²

RF parameters scaling

f	2.856 [GHz]	11.424 [GHz]
R _s	46 [MΩ/m]	92 [MΩ/m]
Q	15335	7668
P _{rf}	10 [MW] @ 120MV/m	20 [MW] @ 480MV/m
P _{rf}		10 [MW] @ 350MV/m
P _d @ 10 Hz	4.7 [kW/m]	0.2 [kW/m]
τ	4 [µs]	0.5 [µs]
Cavity Length	86 mm	21.5 mm
Iris Radius	12 mm	3 mm

- 2) Basic scheme for reflections compensation using a 90 deg hybrid junction
- ⇒ High power circulators (isolators) in X-band are not available
- \Rightarrow Possibility to protect the RF source from reflections with 90 deg hybrid junction

Courtesy D. Alesini

2.1) 90 deg hybrid junction applications

3) X-band gun scheme (1/2)

DEVELOPMENT OF AN X-BAND PHOTOINJECTOR AT SLAC*

E. Vlieks, G. Caryotakis, R. Loewen, D. Martin, A. Menegat SLAC, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
E. Landahl, C. DeStefano, B. Pelletier, and N.C. Luhmann, Jr. 3001 Engineering III, Dept. of Applied-Science Davis, CA 95616, USA

Number of Cells	5.5
Peak Surface Gradient/Power	200 MV/m @ 16 MW
RF Filling Time	65 ns
Cathode Material	Copper
RF Pulse length	200 ns

Velocity bunching concept

 $H = \gamma - \sqrt{\gamma^2 - 1} - \alpha \cos(\phi)$

L. Serafini, M. Ferrario, 20th ICFA Workshop Arcidosso, 2000.

C. Ronsivalle et al. , "Optimization of RF compressor in the SPARX injector", PAC05

QuickTime™ and a Cinepak decompressor are needed to see this picture. QuickTime™ and a Cinepak decompressor are needed to see this picture.

the SALAF r&d programm

High Frequency Linear Accelerating Sections Group Leader: Bruno Spataro

INFN laboratories & depts.

LNF D. Alesini, R. Boni, V. Chimenti, A. Gallo, F. Marcellini. B. Spataro

Roma• M. Migliorati, A. Mostacci, L. Palumbo

Study and simulation of a 9-cell π -mode X-band structure

CONSTRUCTION of a π -MODE STANDING-WAVE 11.4 GHz COPPER PROTOTYPE

B. Spataro et al., NIM A 554 (2005)

B. Spataro et al., LNF-03-008 (2003)

ASSEMBLED X-BAND MODEL

RF INPUT SLOT

Study and simulation of a 9-cell **π/2-**mode X-band structure

FULL RF PARAMETER LIST FOR π and $\pi/2$ STRUCTURES

	π	π/2
- Frequency, F (Mhz)	11427*	11431.57*
- Length for calculation, L(cm)	11.81	11.509
- Beam tube length, 1 (cm)	3	3
- Cavities number, n _b	9	9**
- Ratio of phase to light velocity, v _ф /c	1	1
- Structure periodicity, L _p (cm)	1.3121	1.3121
- Beam hole radius, r (cm)	0.4	0.4
- Iris Thickness, t(cm)	0.2	0.2
- Transit time factor, T	0.731	0.765
- Factor of merit, Q	8413.18	7101
- Form factor, $R_{sh}^{}/Q$ (Ω /m)	9165.38	9693
- Shunt impedance, R _{sh} (M Ω/m)	77.11	68.83
- Peak power, P (MW)	2.701	2.949
- Energy stored in cavity of length L, W (joules)	0.316	0.292
- Coupling coefficient, K (%)	2.4	3.6
- Peak power per meter, P/m (MW/m)	22.87	25.62
- Energy stored in cavity per meter, W/m (joules/m)	2.677	2.537

	π	π/2
- Duty cycle, D.C.	10 ⁻⁴	10 ⁻⁴
- Repetition frequency, f (Hz)	50	50
- Power dissipation, P _d (Watt)	270.1	294.9
- Average accelerating field, E _{acc} (MV/m)	42	42
- Peak axial electric field, E _{max} (MV/m)	57.49	54.91
- Kilpatrick factor	1.197	1.16
- Peak surface electric field, E _{sur} (MV/m)	104.84	102.097
- Ratio of peak to average fields E _{max} /E _{acc}	1.37	1.31
- Ratio of peak to average fields E _{sur} /E _{acc}	2.496	2.431
- Ratio of peak fields B _{max} /E _{sur} (mT/MV/m)	1.65	1.9
- Pulse charge, C (nC)	1	1
- Pulse length, $ au$ (psec)	10	10
- Bunches number, n	1	1
- Average beam power, P _{baver} (W)	0.248	0.242
- Energy spread due to the beam loading, %	±0.783	±0.828
- Loss parameters due to the HOM's K_p (V/pC)	17.91	16.44
- Loss parameter of the operating mode, K ₀ (V/pC)	19.43	20.03

3D coupler design (HFSS)

- 1 The radius of the central coupling cell has been retuned to compensate for the perturbation induced by the coupling hole;
- 2 The waveguide input port is connected to an X Band standard waveguide by a tapered section of 200 mm.

π -mode ACCELERATING ELECTRIC FIELD BEHAVIOR AFTER the 9-CELL TUNING

THE FIELD FLATNESS IS < 1%

π mode Cu structure after brazing

B. Spataro et al., LNF-05-22 (2005)

Iris Brazing Cu-Mo (alloy Palcusil 10)

B. Spataro, V. Lollo et al., to be published

Tests of electroformed cavity

Next step: improvement Mo surface roughness, (<150 nm) with dedicated tool

Cu-Mo

Cell ready to be treated with alkaline solution (sodium hydroxide NaOH) in order to eliminate the aluminium core

B. Spataro, V. Lollo et al., LNF-05-23 (2005)

SPARX S-band baseline

Courtesy C. Vaccarezza

SPARX Objectives

- Indications from the SPARX workshops
 - ENEA CR Frascati 16.01.2001 - INFN-LNF 09.05.2005

Wavelength range : 0.5 - 13.5 nm

- water window
 (~ 2.5 4.5 nm)
- value of the value

Timeline SOFT X-ray Free Electron Lasers

2005 2006 2007 2008 2009 2010 2011 2012

Conclusions

•X - band photoinjector could be an ideal source to drive short wavelength FEL experiments, provided that high peak field (>300 MV/m) could be achieved

•X - band photoinjector operating in multi-bunch mode could be of interest also for CLIC main beam?

•R&D program in the stream of X-band structures development is already started at LNF

•A fully X-band 2 GeV linac is a very promising option for the SPARX FEL project (if it fits with the present time schedule)