Test Beam Line (TBL)
 Beam Dynamics studies

E. Adli, CERN AB/ABP / UiO

June 1, 2007

The purpose of the TBL

- Validate the drive beam decelerator concept
- Demonstrate the efficiency of RF power production
- Demonstrate the stability of the drive beam
- Demonstrate algorithms and technology for CLIC

Purpose and content of presentation

Purpose of presentation:
"try to outline alignment precision requirements, starting from the energy extraction requirement"

Contents:

1. Energy extraction and beam envelope
2. Beam stability with transverse wakes (summary)
3. Effect of component misalignments

Part I

Energy extraction and beam envelope

Simulation set-up: LATTICE

One unit ($\mathrm{L}=1.4 \mathrm{~m}$)

Simulation lattice:
16 units of one of each:

- PETS (coupler as drift)
- Quad
- BPM

The CTF3 drive beam

- High-current, low-energy beam for strong wake field generation
- Initial beam parameters used for these simulations:
- $\mathrm{E}_{0}=150 \mathrm{MeV}$ (no energy spread)
- $1=30 \mathrm{~A}$
$\square \mathrm{d}=25 \mathrm{~mm}$ (bunch spacing, $\mathrm{f}_{\mathrm{b}}=12 \mathrm{GHz}$)
- Gaussian bunch, $\sigma_{z}=1 \mathrm{~mm}$
$■ N=200$ (enough for steady-state situation to be reached).
- $\varepsilon_{\mathrm{N}}=150 \mu \mathrm{~m}$

Deceleration

- Particles will feel parasitic loss and induce a wake field in the PETS
- The wake field will interact with and further decelerate :

1) rear part of bunch (single-bunch effect)
2) following bunches (multi-bunch effect)

- The integrated effect in a PETS on a witness particle due to a source particle is given by (h.o.m. ignored)

$$
\int_{0}^{l_{c a v}} F_{L}(z) d s \approx-q_{s} q_{w} w_{L}(z)
$$

where w_{L} is the std. longitudinal monopole wake function

Simulation software: PLACET

- The simulation package used here is PLACET (D. Schulte)
- Allows to study the effect of single-bunch + multi-bunch wakes precisely
- Beam model used here: sliced beam with a Gaussian longitudinal profile

- wake acting on a given slice is simply the sum contribution from all leading slices (multi- and singlebunch effects treated on equal footing)

Simulation results: energy extraction

- PETS longitudinal wake parameters:
- $\mathrm{R}^{\prime} / \mathrm{Q}=2294.7 \Omega / \mathrm{m}$ (linac-convention)
- $\mathrm{f}_{\mathrm{L}}=11.99 \mathrm{GHz}$
- $\beta_{\mathrm{g}}=0.4529$
- Beam energy profile after lattice: (nitial: flat $\left.\mathrm{E}_{0}=150 \mathrm{Mev}\right)$

- NB: start of beam / bunch is to the left! (PLACET output def.)

Wake calculations and group velocity

- The wake is calculated using GdfidL (I. Syratchev), modeled as a single monopole mode traveling out of the PETS with a high group velocity $\left(\beta_{\mathrm{g}}\right)$ [and extracted to HDS]

- In the longitudinal wake function this leads to
- factor $1 /\left(1-\beta_{g}\right)$ (concentration of the field)
- catch-up distance for the trailing bunch, $s=z \beta_{g} /\left(1-\beta_{g}\right)$
- The wake parameters $R^{\prime} / Q, \beta_{g}$ and f are taken as input to PLACET the simulation δ-wake:

$$
W_{\delta L}(z)=\omega_{L} \frac{R^{\prime}}{Q} \frac{1}{1-\beta_{L}} \cos \left(\omega_{L} \frac{z}{c}\right)\left(L-z \frac{\beta_{L}}{1-\beta_{L}}\right)[V / C]
$$

Steady-state

- Catch-up with field from n bunches ahead at a distance $s=n d \beta_{g} /(1-$ β_{g})
- Steady-state energy profile is thus reached after

$$
\mathrm{n}=\left(\mathrm{I}_{\text {PETS }} / \mathrm{d}\right)\left(1-\beta_{\mathrm{g}}\right) / \beta_{\mathrm{g}}=39 \text { bunches }
$$

- Steady-state power can be calculated as $P=\frac{\omega}{4 v_{g}}\left(R^{\prime} / Q\right) I^{2}{ }^{\text {EETSI }} I^{2} F^{2}(\sigma)$ ($P=172 \mathrm{MW}$, or $P \approx 166 \mathrm{MW}$ if wall losses are included)

When the bunch profile and energy extraction efficiency is discussed we always talk about the steady-state situation.

Steady state bunch profile

- The steady-state bunch profile depends on the multi-bunch effects as well as the single-bunch effects
- Multi-bunch wake alone would form a symmetrical energy profile (cosine-like wake function, combined with Gaussian distribution)
- Single-bunch wake: last part of the bunch will be more decelerated than the first -> point of minimum energy shifted towards the end
- However, for our case, $\mathbf{n}=\left(\mathrm{I}_{\text {PETS }} / \mathrm{d}\right)\left(1-\beta_{\mathrm{g}}\right) / \beta_{\mathrm{g}}=39$ multi-bunch is dominant

- Compare with e.g. profile for CLIC 12 GHz ($\mathrm{I}_{\text {PETS }}=\mathbf{0 . 2 3} \mathbf{~ m}$)

Energy extraction efficiency: η

- $\eta=P_{\text {in }} / P_{\text {out }}:$ steady state power extraction eff: $\eta=P[W] \times N / E O[e V] \times I[A]$
- Suggestion: it could be useful to express the extraction efficiency as:

$$
\eta=S \times F(\sigma) \times \eta_{\text {dist }}
$$

where for TBL nominal parameters we get:

- $\mathrm{S}=63.3$ \% (max energy spread)
- $\eta=S \times F(\sigma) \times \eta_{\text {dist }}=63.3 \% \times 96.9 \% \times 99.9 \%=61.3 \%$

- (can be changed with detuning: not discussed further here)

The CTF3 drive beam

- High-current, low energy beam for strong wake field generation
- Initial beam parameters used for these simulations:
- $E_{0}=150 \mathrm{MeV}$ (no energy spread)
- I = 30 A
$\square \mathrm{d}=25 \mathrm{~mm}\left(\mathrm{f}_{\mathrm{b}}=12 \mathrm{GHz}\right)$
■ Gaussian bunch: $\sigma_{z}=1 \mathrm{~mm}$
$■ N=200$ (enough for steady-state situation to be reached).
- $\varepsilon_{\mathrm{N}}=150 \mu \mathrm{~m}$
- Resulting parameters:

■ P = 166 MW (steady-state power production)
■ S = 63.3 \% (max .energy spread)

- $\eta=61.3$ \% (steady-state extraction efficiency)

Energy spread and beam envelope

- Why is the max. energy spread, S , important?
- In the TBL we will have the effect of adiabatic undamping

- The divergence, $y^{\prime}=\mathrm{dy} / \mathrm{ds}$, and thus also the beam envelope will increase with decreasing energy

Calculation of the max. beam envelope

- This implies that as the beam is decelerated its transverse size will grow, even without considering transverse wake kicks or machine imperfections
- The rms beam size is

$$
\sigma_{x, y}=\sqrt{\beta_{x, y} \varepsilon_{x, y}}=\sqrt{\beta_{x, y} \varepsilon_{N, x, y} / \gamma}
$$

- We define the adiabatic " 3 -sigma beam envelope" as

$$
r_{a d}=\sqrt{3^{2} \sigma_{x}^{2}+3^{2} \sigma_{y}^{2}}
$$

where γ is for the lowest energy particle in the bunch

- Setting in for S, with γ_{0} the initial gamma we get the value in the middle of a quad:

$$
r_{a d}=\sqrt{3^{2}(\breve{\beta}+\hat{\beta}) \varepsilon_{N} /(1-S) \gamma_{0}} \approx 3 \cdot 2 \sqrt{L_{u n i t} \varepsilon_{N} /(1-S) \gamma_{0}}
$$

- For our initial parameters we get

$$
r_{a d, \text { after }}=8.3 \mathrm{~mm}, r_{a d, \text { initial }}=5.0 \mathrm{~mm}
$$

- Meaning: with the nominal paramters cited above we will have a resulting 3σ beam size of 8.3 mm due to the adiabatic undamping alone (while half-aperture is $\mathrm{a}_{0}=11.5 \mathrm{~mm}$) !

Beam envelope along the lattice

- Thus, beam envelope along the lattice $\mathrm{r}_{\mathrm{ad}} \propto 1 / \sqrt{ } \gamma$, γ for lowest particle

The CTF3 drive beam

- High-current, low energy beam for strong wake field generation
- Initial beam parameters used for these simulations:
- $E_{0}=150 \mathrm{MeV}$ (no energy spread)
$\square \mathrm{I}=30 \mathrm{~A}$
$\square \mathrm{d}=25 \mathrm{~mm}\left(\mathrm{f}_{\mathrm{b}}=12 \mathrm{GHz}\right)$
- Gaussian bunch: $\sigma_{z}=1 \mathrm{~mm}$
$■ N=200$ (enough for steady-state situation to be reached).
- $\varepsilon_{\mathrm{N}}=150 \mu \mathrm{~m}$ Initial beam parameters used for these simulations:
- Resulting parameters:

■ P = 166 MW (steady-state power production)
■ S = 63.3 \% (max .energy spread)

- $\eta=61.3 \%$ (steady-state extraction efficiency)
$\square r_{a d}=8.3 \mathrm{~mm}$ (3-sigma envelope due to adiabatic effects alone)

Smaller beam envelope?: reduce the current

- The adiabatic envelope, $r_{a d}$, can be made as small (large) as we want by decreasing (increasing) the current, I.
- For the TBL, I can be calculated on the fly as function of r, E_{0}, N and PETS parameters (only because: $\eta \approx S \times F(\sigma), \eta_{\text {dist }} \approx 1$)
- (Calcs omitted)
- However, decreasing the current will mean less power extracted, P, and less extraction efficiency η achieved (while we want to show as high P and η as possible)
- E.g. for if we want a $r_{\text {ad }}=(2 / 3) a_{0}=7.7 \mathrm{~mm}$ we must reduce current to $\mathrm{I}=27 \mathrm{~A}$ (with a corresponding lower $P=135 \mathrm{~W}, \eta=55 \%$)

Challenge: beam dynamics calculations

- We have up to 90% energy spread S (CLIC)
- Spread acts stabilizing (different betatron wavelength lead to decoherence of transverse kicks) - but difficult to calculate the effect
- Also the finite group velocities and damping makes calculations difficult
- No analytical formulas or framework available (ongoing work, try to get somewhere, but no results so far)
- \rightarrow need for simulations

Steady state bunch energy profile

Part 2

Effect of transverse wakes (summary)

Transverse wakes

- A source particle q_{s} induces wake fields in PETS cavity

- A witness particle q_{w}, following at a distance z, is kicked by the fields from leading particles
- The total transverse force on q_{w} is given by (1D)

$$
\int_{0}^{l_{c a v}} F_{y}(z) d s \approx-\Delta y q_{s} q_{w} w_{T}(z)
$$

where $w_{T}(z)$ is the transverse dipole wake function - the " δ-wake" (h.o.ms ignored here)

PLACET input: dipole wake function

- PETS are modelled with GdfidL (I. Syratchev)
- For a given PETS structure, the transverse δ-wake / impedance is calculated

W_{T}	Q	F
0.045	300	27.44
0.019	180	28.05
0.017	290	32.912
0.2	85	39.12
0.03	120	41.83
0.015	380	48.91
0.85	3.7	10.0
4.82	3.8	13.4
2.63	6.2	15.46

PLACET simulations

- Multiple modes identified from GdfidL calc
- For each mode, $w_{T_{i}}, Q_{i}, f_{T_{i}}, \beta_{T_{i}}$ are identified
- The total wake function for each mode thus:

$$
W_{T_{i}}(z)=w_{T_{i}} \sin \left(\omega \frac{z}{c}\right)\left(L-z_{i j} \frac{\beta_{T}}{1-\beta_{T}}\right) e^{-z \omega / 2 c Q\left(1-\beta_{T}\right)}[V / C m]
$$

- Transverse kick of q_{w} :

$$
\Delta y_{w}^{\prime}=\sum_{m o d e s} \frac{\Delta p_{y, w}}{m_{w} c}=\sum_{m o d e s} y_{s} \frac{q_{s} q_{w}}{E_{w}} W_{\delta T}(z)[\mathrm{rad}]
$$

Goal: transverse wakes should not amplify beam jitter

- A design target for the PETS is to ensure that beam jitter are not amplified significantly due to transverse wakes (and leading to beam blow-up)
- A number of simulations has been run (initiated by I. Syratchev)
- Results: basically no problem for nominal PETS parameters (both CLIC and TBL lattice checked)
- (Example: CLIC low $\beta /$ high β FODO lattice)

$4 \mathrm{~A}, \mathrm{Q}=1.5 \mathrm{Q}_{0}$ (1m, no detuning): $r=4.6 \mathrm{~mm}$

More examples of PETS test simulations

- Metric used: 3 - sigma beam envelope at end of lattice
- Initial conditions: beam with initial static offset + jitter at the transverse resonance frequency
- Beam blow-up depends on $z / \lambda_{T_{i}}: \sin \left(\frac{2 \pi}{\lambda_{T_{i}}} z\right)=0 \Rightarrow z=\frac{n}{2} \lambda_{T} \Rightarrow f_{T}=$ $\frac{n}{2} 12 \mathrm{GHz}$ (zeros)

SUM mode, $\Sigma w, \bar{Q}$

$$
w=8.3, Q=4.6
$$

$$
\text { Config 4A: } \omega / Q=\text { const }
$$

Part 3

Effect of component misalignment

5 types of misalignment studied

- In part 1 and 2: all simulations was with a perfectly aligned machine

- Now: will study the effect of misalignment of machine components
- Each misalignment (PETS, Quads) studied separately
- 100 random machines simulated for each case. Metric: max. centroid offset, r_{c}, along lattice (of all machines)
- The initial beam will be assumed to be on the reference orbit
- Adiabatic effect is NOT included in order to study each effect separately (no macroparticles distribution)
- Total 3-sigma beam envelope will therefore be
- 3-sigma adiabatic envelope " + " centroid envelope $: r_{a d}$ " + " r_{c} (where the " + " is only in worst case a real +)
- Still: with the adiabatic envelope $r=8.3 \mathrm{~mm}$ (versus half-aperture of $\mathrm{a}_{0}=11.5 \mathrm{~mm}$) we do not have a large "envelope budget" for component misalignment

1) Position offset of PETS

- A PETS off axis will induce transverse kicks (dipole wake $\propto y_{\text {source }}$)
- We scatter the PETS in $\mathrm{y}: \sigma_{\text {PETS }}=\{40 \ldots 400\} \mu \mathrm{m}$

(linear graph due to the linear lattice model and same seeds in all simulations - all info in one point)
- Prelim. criterion: centroid envelope $<1 \mathrm{~mm}$
$\Rightarrow \sigma_{\text {PETS }}<120 \mu \mathrm{~m}$

Position offset of PETS with Q-scaling

- Also interesting to see effect of large Q in this scenario (previous PETS simulations imply that the effect should not be drastic)

- We see that as long as $\sigma_{\text {PETS }}<100 \mu \mathrm{~m}$ we are still OK , even for a factor $\mathrm{Q}=3 \mathrm{Q}_{0}$
- (But this is not "worst case scenario" for PETS: jitter on resonance)

2) Angle offset of PETS

- An angle offset (around x, y) of the PETS centre should basically have the same effect as the corresponding position offset, $\sigma_{\theta-\text { PETS }}=$ $\left(\sigma_{\text {PETS }} / 0.5 I_{\text {PETS }}\right)^{\star 2}$. Just to confirm:

- Prelim. criterion: centroid envelope $<1 \mathrm{~mm}$
$\Rightarrow \sigma_{\theta-\text { PETS }}<0.6 \mathrm{mrad}$
- (An angle offset around s : negligible effect)

3) Position offset of quadrupoles

- An offset in a quad will induce a dipole kick
- We scatter the quads in $\mathrm{y}: \sigma_{\mathrm{q}}=\{10 \ldots 100\} \mu \mathrm{m}$

- We see that without any correction of the quad positions we should require a final alignment $\sigma_{\text {PETS }}<10 \mu \mathrm{~m}$ (probably not feasible with prealignment?)
- Solution: beam-based alignment (BBA)

BBA for quads: 1-to-1 correction

- Quads in TBL (as in CLIC) will be on movers
- The simplest BBA: steer each quad so that the beam goes through centre of the following BPM

- Implementation: correction can in principle be performed in one go. b:

BPMs after one pulse. R: the response matrix: $\Delta \mathbf{y}_{c}=\mathbf{R}^{+} \mathbf{b}$

- Effectively: quad position error σ_{q}, is transferred to BPM position error

$\sigma_{\text {BPM }}$

- 1-to-1 correction can be needed as a first correction - but we can do better

BBA for quads: dispersion free steering

- The dipole kicks resulting from quad offset will induce dispersion (in the sense "energy-dependent trajectories") in the lattice
- Idea: move quads so that beams of different initial energies follows the same trajectory
- E.g. send the nominal beam with E_{0} and a test-beam with $\mathrm{E}_{1}=0.8 \times \mathrm{E}_{0}$
- This can, in principle, be implemented by generating the response matrix of both the nominal beam, \mathbf{R}_{1}, and for a beam of e.g. lower energy, \mathbf{R}_{2}, measure and do the correction $\Delta \mathbf{y}_{\mathrm{c}}=\left(\mathbf{R}_{1}-\mathbf{R}_{2}\right)^{+\left(\mathbf{b}_{1}-\mathbf{b}_{2}\right)}$ (weighted against 1-t-1. correction)
- Effectively: quad position error σ_{q}, is transferred to BPM resolution error $\sigma_{\text {res }}$

Special variant of DFS needed for TBL

- TBL and CLIC deceleration station:
- cannot use lower energy beam due to beam stability
- higher initial energy beam not available
- Trick: we can use a beam with lower current instead Wakefields will be lower and beam will quickly have higher energy
- Can either reduce bunch charge, or take out a number of bunches (probably easier?)
- Results seems to be as good as for energy test beam
- All results from now are run with optimal DFS weighting NB: now very easy to test new BBA algorithms in PLACET with then new Octave interface (A. Latina)

Correction with current test beam DFS

- Seemingly very good result (with our linear lattice and ideal elements), and shows the principle
- Remains to be studied: the DFS algoritm is, among other things, sensitive to jitter in the main/test beams. E.g. inducing uncorrelated random jitter $\sigma_{\text {beam }}=100 \mu \mathrm{~m}$ on both beams gives a substantially worse result. However, this can be partially remedied (D. Schulte), but not studied further here.

■ In the worst case: 1-to-1 correction would give as good result as DFS

$\sigma_{q}=\{0 \ldots 100\} \mu m$, w/ correction

TBL as a test-bed for the CLIC station

- In any case: it would be very interesting to use the TBL to test the concept of dispersion free steering and other beam-based alignment
- One would like to have similar conditions to the CLIC station (ideally: similar alignment precision and BPM resolution)
- TBL: also test-bed for automation of BBA ?

4) Angle offset of quadrupole

- A small rotation around s (skew quadrupole) will have negligible effects for the 8 FODO cell lattice in question
- A small rotation around x, y will have negligible effect (integrated force ≈ 0, due to negligible motion in a quad)
- Quad angle offset in y: $\sigma_{\theta q}=\{0 \ldots 2\} m r a d$. Just to confirm:

- Negligible for even relatively large rotation

Wrap-up: full simulation

- We now put errors on all elements simultaneously, in both x and y
- $\left\{\sigma_{\text {PETS }}, \sigma_{\theta-\text { PETS }}, \sigma_{q}, \sigma_{\text {BPM }}\right\}_{\mathrm{X}, \mathrm{y}}\{100,200\}$ um (or corresponding angle)
- This time we observe the total 3-sigma beam envelope, $r_{a d}$ " ${ }^{\prime \prime}{ }^{\prime} r_{c}$ (w and w/o correction)
- Now, we put alignment error a factor two
- Now: with $\mathrm{Q}=2 \mathrm{Q}_{0}$

Discussion

- Trustworthiness of the simulation results
"Are we now sure to get the TBL beam through???"
- In "favour"
- Our metrics are conservative
- In "disfavour"
- several important idealizations:
- lattice: except scattering and BPM res: ideal lattice elements
- lattice: linear lattice
- beam: Initial 0 bunch energy spread
- beam: gaussian bunch shape
- wakes: Only monopole and dipole wake
- wakes: PETS Q factor difficult to predict
- ...and more
- First conclusion: a TBL is still needed...

Conclusions

- The nominal PETS parameters given seem satisfactory
- We see that the difference between a position accuracy of $\sigma=100 \mu \mathrm{~m}$ and $\sigma=200 \mu \mathrm{~m}$ is significant
- Under the conditions in these simulation, with $\sigma=200 \mu \mathrm{~m}$ we cannot get the beam fully through even when doing 1-to-1 correction (only with perfect DFS steering) (without reducing I, P and η)
- The margin for $\sigma=100 \mu \mathrm{~m}$ is much more comforting. Ideally :
$\Rightarrow \sigma_{\text {PETS }}<=100 \mu \mathrm{~m}$ (minimize transverse wake kick)
$\Rightarrow \sigma_{\theta-\mathrm{PETS}}<=0.5 \mathrm{mrad}$ (same reason)
$\Rightarrow \sigma_{\text {quads }}<=100 \mu \mathrm{~m}$ (get beam through in order to prepare for further corrections)
$\Rightarrow \sigma_{\text {BPM }}<=100 \mu \mathrm{~m}$ and $\sigma_{\text {res }}<=5 \mu \mathrm{~m}$
\Rightarrow Mover positioning resolution in x and y : same O.M. as $\sigma_{\text {res }}$

