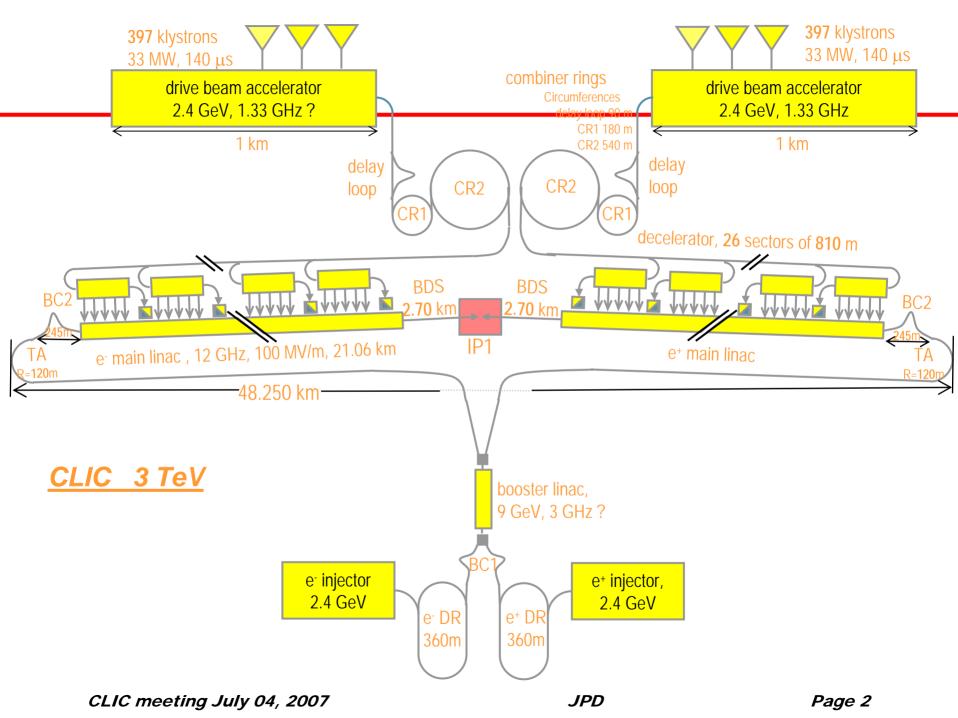
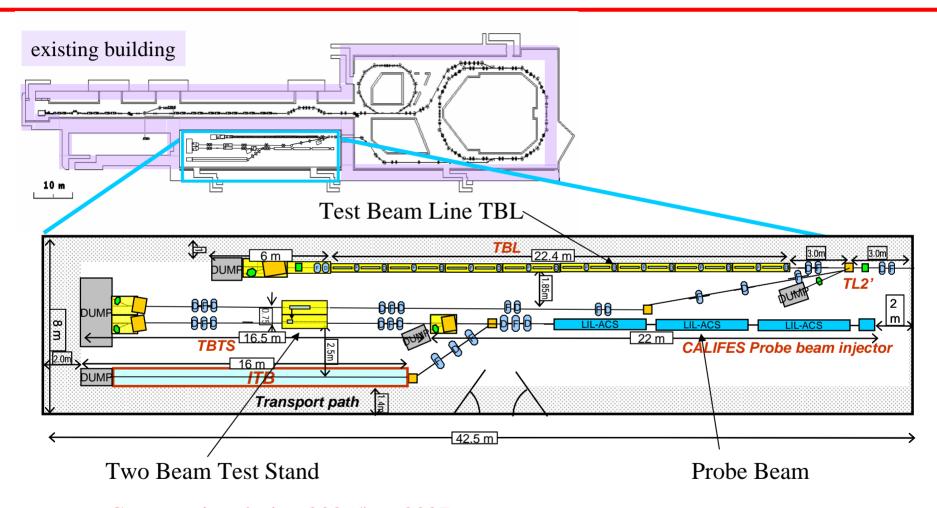

Follow-up of CLIC Advisory Committee (ACE) (20-22/06/07)



CLIC Advisory CommitteE

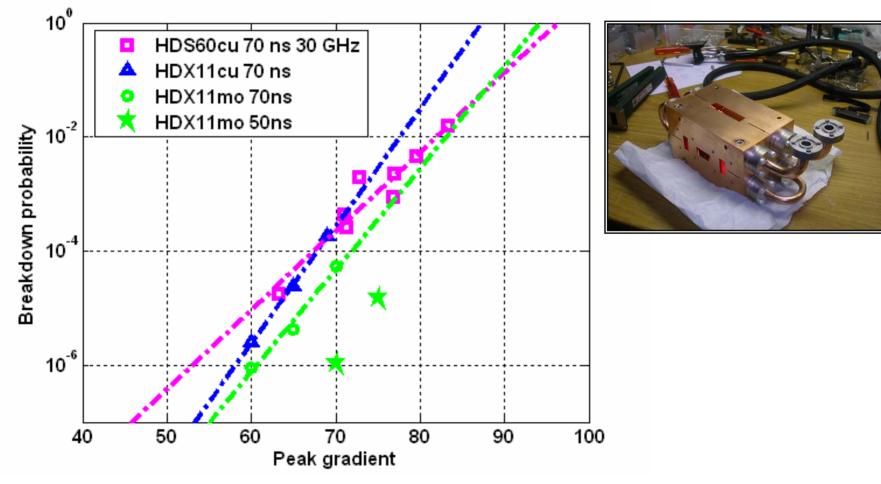

- General comments
- The ACE Committee
- Preparation in CLIC working groups
- Review of the ACE recommendations to the CLIC/CTF3 Collaboration Board and DG
- Action plan

CLIC parameters at 3, 1 and 0.5 TeV

Parameter	Symbol	3 TeV	1 TeV	0.5 TeV	ILC	Unit
Center of mass energy	E _{em}	3000	1000	500	500	GeV
Main Linac RF Frequency	f _{RF}	12	12	12	1.3	GHz
Luminosity	L	7	2.7	2.1	2	10 ³⁴ cm ⁻² s ⁻¹
Luminosity (in 1% of energy)	L _{99%}	2	1.5	1.4		10 ³⁴ cm ⁻² s ⁻¹
Linac repetition rate	f_{rep}	50	75	100	5	Hz
No. of particles / bunch	N _b	4.0	4.0	4.0	20	109
No. of bunches / pulse	k _b	311	311	311	2670	
No. of drive beam sectors / linac	N _{unit}	26	9	5	-	-
Overall two linac length	l _{linac}	41.7	14.4	8.0	22	km
Proposed site length	l _{tot}	48.25	20.55	14.15	31	km
DB Pulse length (total train)	$\tau_{\rm t}$	139	48	27	-	•s
Beam power / beam	P _b	15	5	5	10.8	MW
Total site AC power	P _{tot}	388	~250	158	230	MW

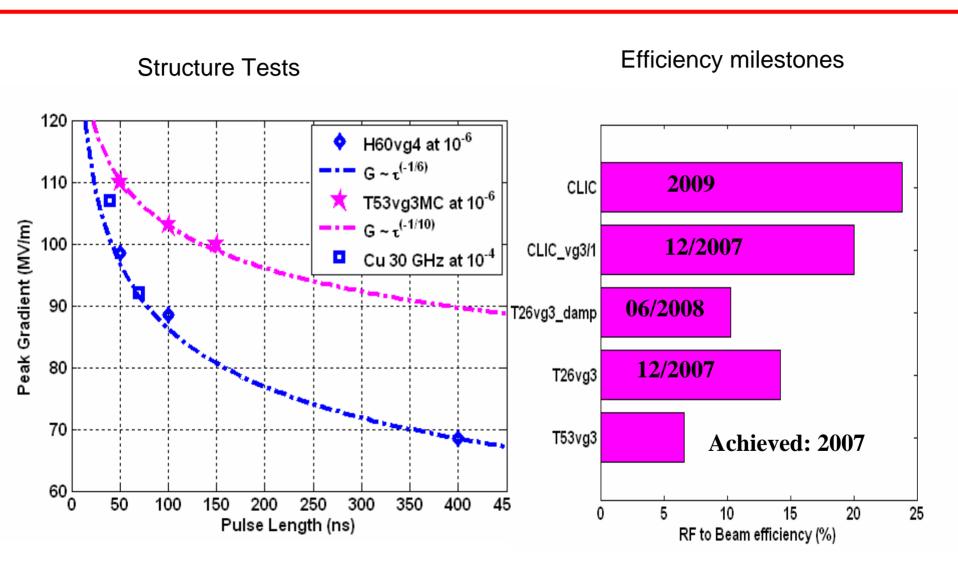
CTF3 status, commissioning and plans

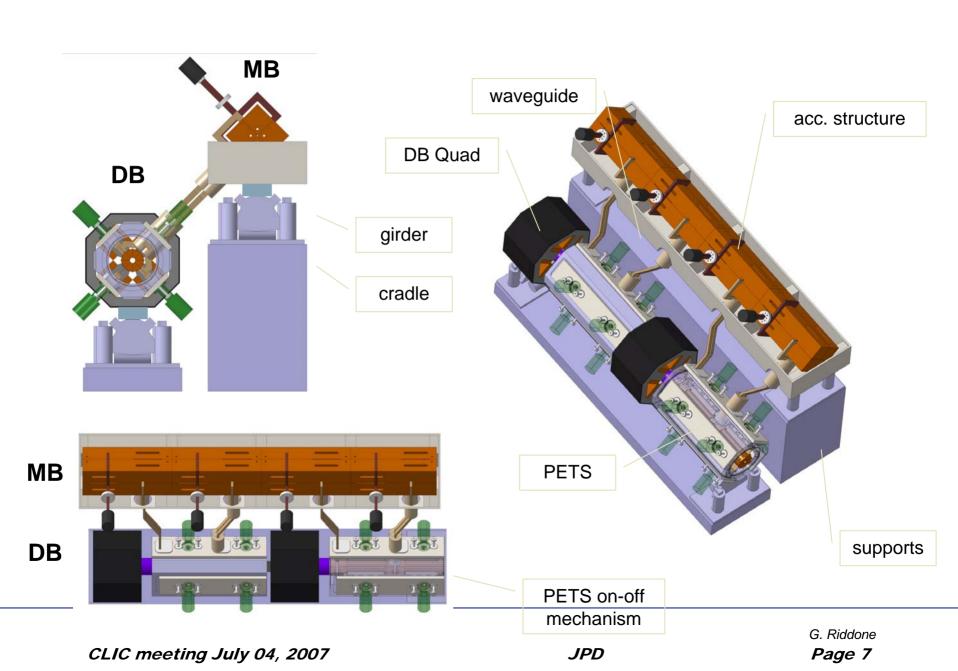
Construction during 2006/beg 2007 installation of equipment from 2007 - 2009


Beam in CLEX from 2008 onwards

CLIC meeting July 04, 2007

Hybrid damped structures (HDX) at x-band Frequency scaling

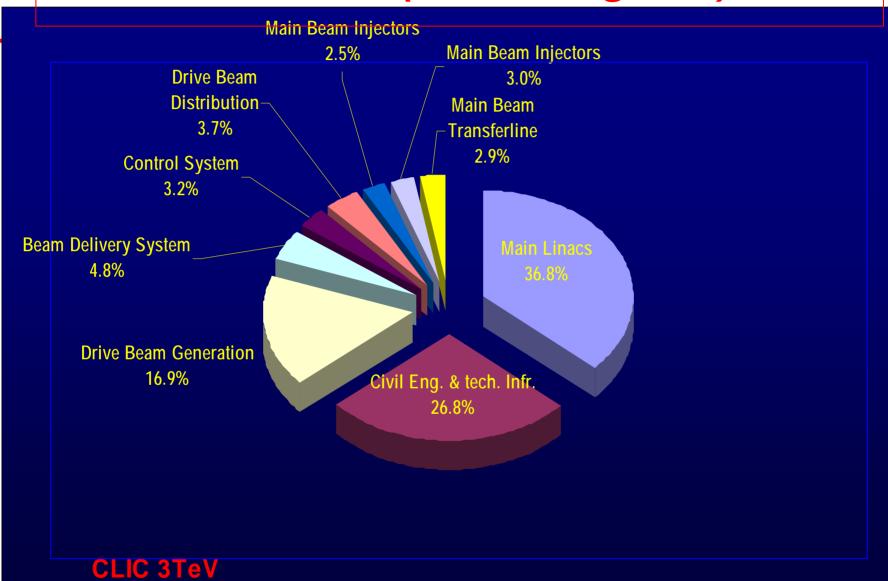


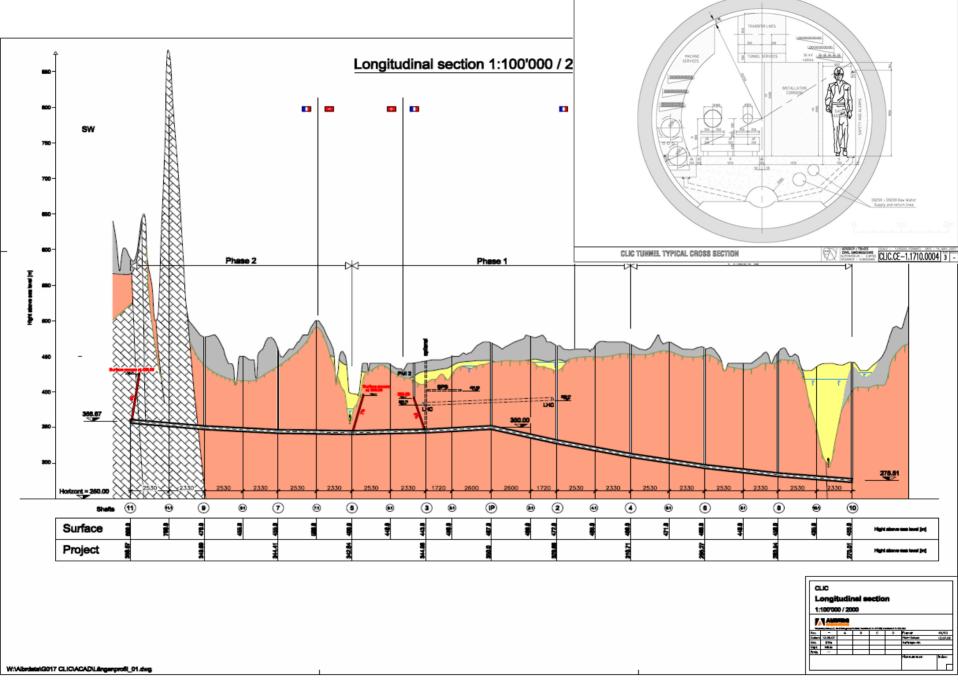


Scaled structures show very similar performance

HDS-type structures show consistently limited performance

CLIC Accelerating Structures





CLIC meeting July 04, 2007

Page 8

CLIC cost (relative figures)

General comments

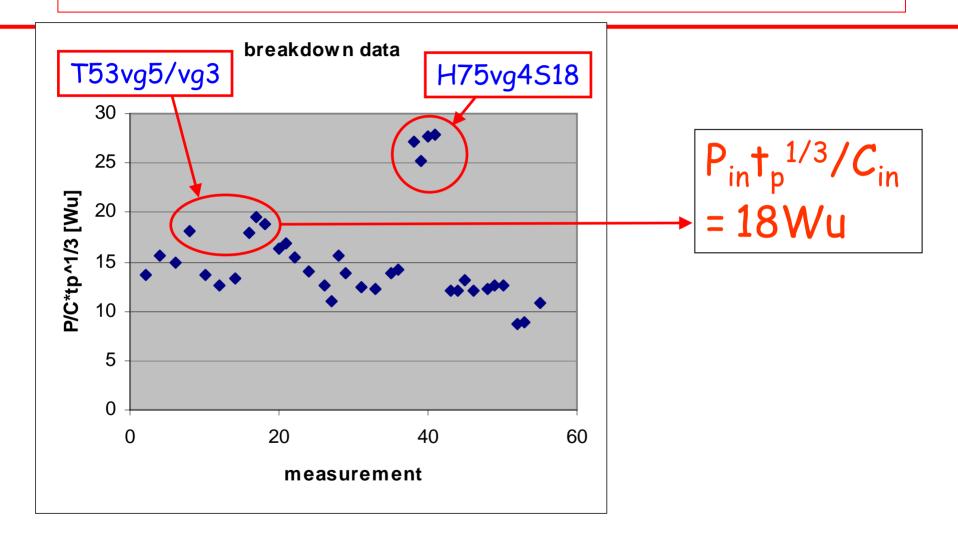
- Excellent preparation (Thanks to the working groups)
- Excellent presentations (Thanks to speakers)
- Excellent atmosphere (Thanks to ACE)
- Very constructive discussion and comments (Thanks to all)
- Excellent organisation (Thanks Sonia)
- Very useful comments of the Committee
- Strong CLIC support to Collaboration Board and to the DG
- ACE members to be enlarged (number and expertise)

Final ACE Comments

- Very impressed with CLIC effort
 - Large amount of progress over the last decade
 - Has the potential to offer a real path to multi-TeV e+/e- LC
- CTF3 will demonstrate most of the critical issues
 - Potential to create an 800 MeV test linac using CTF3 TBL
 - Clearly needed for TDR but likely possible well before
- Like to have the next meeting focused on the structure and PETS development program
 - Dates TBD but probably January
- Excellent presentations
 - Thanks to all participants (extra thanks to Sonia!)

Summary of Committee recommendations about structures: (Action Structure WG)

- Additional tests to benchmark P/c scaling law
 - Tests pieces of CLIC structures
- Do not mix fabrication, damping & gradient issues
 - Test of quadrant separate from gradient
 - Develop tests (separate from gradient issues) to validate choices
- Consider zero crossing detuning for additional damping
- Develop a detailed structure development & test program
 - Fabrication and testing schedule with milestones and decision points
 - Focus on separate issues (gradient, damping. Cost)
- Maximise the tests facilities
 - Take advantage as much as possible of SLAC and KEK existing facilities - invite FNAL to participate


Page 13

- Strong support to 12 GHz power test stand

Additional note about Structures

- Review of breakdown rate (BR) specification (10^-6) with short structures and low gradient (Action: Hans)
- Validation of P/C scaling with frequency
 - Graph of all scaled (BR= 10^-6) to all tested structures (X band & 30 GHz) (Action: Alexej)

X-band data @ BDR=10⁻⁶

Summary of Committee recommendations about PETS

- Develop a PETS test program (including Petsonof) similar to the one on structures (Action: Igor)
- Consider using TBL to power additional structures
 - Consider reduce to 8 PETS and add accelerating structures

```
(Action?: Steffen)
```

- Consider fully integrated modules in CLEX
 - Beam acceleration to 800 MeV ?
 - Motivation?

(After 2010? But reserve space?: Action Steffen)

Summary of Committee recommendations about parameters (Action: Parameters WG)

Strong support to change of parameters

- 100 MV/m and 12 GHz
- Coherent set of parameters
- Concerned with long RF pulse, tight tolerances and low emittances

Second iteration of coherent set of parameters

- Adapt optimum structure to low charge and wake field
- Aim for short(er) RF pulse length

Suggest staged approach to 3 TeV

- Low energy (500 GeV? 1 TeV?) with ATF emittances and NLC tolerances
- Range of performances with more challenging parameters

Additional note about Parameters

- With present pulse length (300 ns), length of second Compressor ring (too?) long (540m) (Action: Roberto)
 - consider 2*2*4=16 instead of 2*3*3=18 multiplication factor?
 - 2 Delay loops + CR = 360m, Frf drive linac = 1.5 GHz
- Motivation for 20 mrad crossing angle (ILC = 14)?

(Action? Daniel &Rogelio?)

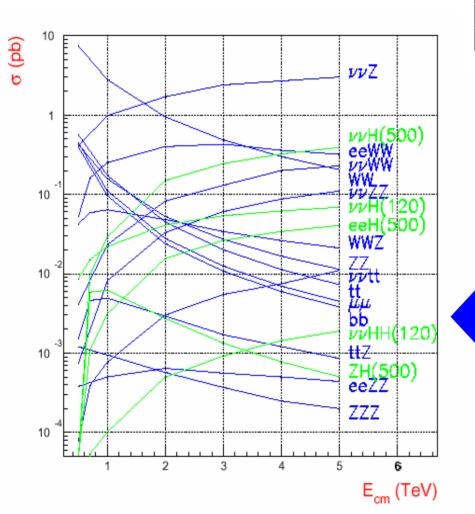
- Why tight(er) tolerances in CLIC than NLC when wakefield effect similar? (Action: Daniel)
- Add NLC in comparison table at 500 GeV (Action: Frank)
- Beam dynamics optimisation (Lb/N as function of a/lambda and Frf) with lower energy and bunch charge? (Action: Daniel)

L_{bx}/N for different gradients

Summary of Committee recommendations about Cost (Action Hans & Carlo)

- CLIC cost mandatory for CLIC concept acceptance in 2010
- Need to show CLIC cost scaling with energy
- Develop international cost model
- Use ILC estimates wherever possible
- Limit CLIC unique aspects to when absolutely necessary

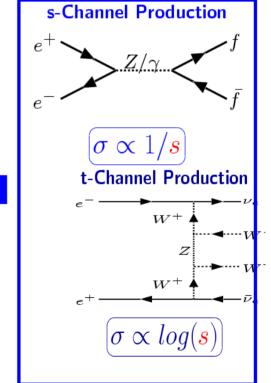
Additional note about Cost (Action: Hans & Carlo)


- CLIC cost to make coherent with parameters optimisation (electricity, etc...)
- CLIC 6kms too long at 3 TeV?
 - Different and deeper site than NLC at 1 TeV (when effective gradient 4 times larger in CLIC!)
- Compare CLIC, ILC and NLC costs for each system
 - In absolute value and %
 - at the same energy and variation of % with energy in CLIC

Additional note about Physics

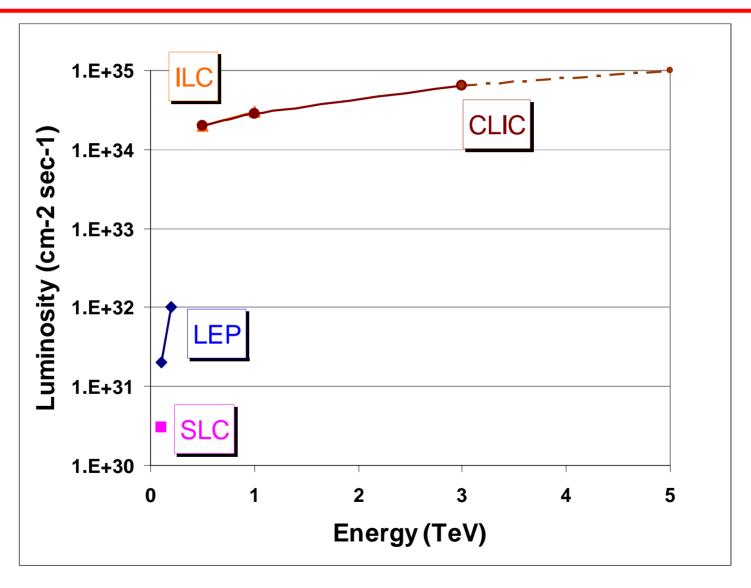
- Cross section increasing with energy for some events
 - Constant luminosity in the multi-TeV energy range
- Need to develop a 500 GeV to 1 TeV design
 - Relaxed parameters?
 - Optimum gradient?
 - Optimum structure?

(Action: Parameter WG)


Cross Sections at CLIC

CLIC meeting July 04, 2007

Event Rates/Year	3 TeV	5 TeV	
(1000 fb^{-1})	10 ³ events	10 ³ events	
$e^+e^- o t \bar t$	20	7.3	
$e^+e^- o b\overline{b}$	11	3.8	
$e^+e^- o ZZ$	27	11	
$e^+e^- \to WW$	490	205	
$e^+e^- ightarrow hZ/h u u$ (120 GeV)	1.4/530	0.5/690	
$e^+e^- ightarrow H^+H^-(1 \text{ TeV})$	1.5	0.95	
$e^+e^- ightarrow ilde{\mu}^+ ilde{\mu}^- \left(1 \text{ TeV}\right)$	1.3	1.0	


 \diamondsuit Main production mechanisms in e^+e^- collisions at $s=4\times E_{beam}^2$:

 \Rightarrow Evolving from LEP-2 at $\sqrt{s} \le 209$ GeV to

Cura / a 2 Tal/ F Tal/ implies reduction of

Performances of Lepton Colliders

Summary of Committee's recommendations about other Critical Tests

Vibration suppression

 Important to demonstrate but explore if it is necessary to test as part of CTF3 – perhaps stand-alone test is sufficient

Instrumentation

- Take advantage of ATF and ILC programs
- Demonstration of structure alignment important
- Emittance transport (structure and quadrupole alignment)
 - Explore studies at CTF3 to demonstrate main beam transport and emittance preservation (could this be part of a test linac built using the TBL??)

Beam phase stabilization

Synergy with FEL and ERL programs ??

Summary of Committee's recommendations about CDR

- A CLIC CDR by 2010 is a huge undertaking
 - Excellent group but ...
- Clearly very limited by resources
 - Resources may be better directed towards demonstrations
 - CTF3 demonstration addresses major technical issues
- Important to develop resource loaded schedule
 - Evolution from R&D group to more project orientated
- Focus on elements that are unique to CLIC concept
 - Two-Beam-Accelerator concept
 - High gradient accelerator
 - Adopt more established parameters in other areas with a staged approach to 3 TeV

CLIC Conceptual Design Report

- Development of a full CDR will be a large undertaking
 - Resources may be better directed towards demonstrations
 - CTF3 demonstration addresses major technical issues
- Focus on elements that are unique to CLIC concept
 - Two-Beam-Accelerator concept
 - High gradient accelerator
 - Adopt more established parameters in other areas with a staged approach to 3 TeV
- Develop international cost model Important for acceptance of CLIC concept
 - Need to show cost scaling with energy
 - Use ILC estimates wherever possible
 - Participate in ILC engineering where common (civil, rf power, magnets, ...)

Next meeting(s)

- Focused on structures
- Advisory Committee: 16-18(am)/01/08
 - Report to Extended CSC (and DG?) on 18/01 pm
- CTF3 technical meeting: 21-23/01/08
- CTF3 collaboration board: 23 (pm) or 24/01/08 (am)