Recent Achievements in the Dynamic Alignment of the CLIC Beam Delivery System

Andrea Latina and Daniel Schulte

CLIC Meeting - September 28, 2007

Dynamic Effects

- During operation, three dynamic effects affect the machine performances
 - pulse-to-pulse: beam trajectory changes
 - jitter and shift: of the components
 - noise: in the diagnostics

 $\Delta L_{\text{total}} \approx \Delta L_{\text{systematic}} + \Delta L_{\text{residual}} + \Delta L_{\text{instrumentation noise}}$

- Sources of vibration include
 - natural seismic motion
 - man-made (cultural) noise
- \Rightarrow The motion can be divided in three regimes
 - high frequency no spatial correlation of the vibration
 - lower frequency ground motion well correlated
 - slow drifts where the motion is uncorrelated

Ground Motion Vibrations

- It is possible to simulate the ground motion vibration using experimental samples (A,B,C,K)
- but one can consider the two limiting extremes:
 - 1. uncorrelated high-frequency jitter
 - 2. slow drifts of components that can be described with the ATL model
- The ATL relation states that

$$<\Delta y^2>~=~A~\cdot~T~\cdot~L$$

- the misalignment of two points is proportional to their distance \boldsymbol{L} and elapsed time \boldsymbol{T}
- A is a site/condition/geology specific parameter, typically in the range 0.1 to 100 nm²/m/s
- \Rightarrow The T dependence has been confirmed in the minute to month time scale.

- ⇒ **High frequency** jitter can be used to estimate the motion of the beam centroid (offset), that will be compensated by **beam-beam correction**
- ⇒ ATL-drifts primarily result in increase of the beam emittance, that will be corrected by component re-alignment

Beam-Based Feedback

- tolerances on the alignment of beamline components require continuous beam-based feedback to counteract performance deterioration
- multi-layered approach on different time scales:
 - \Rightarrow "slow feedback"
 - corrects the beam orbit and compensate for slow ground motion

\Rightarrow inter-pulse feedback

- straightens the train from pulse to pulse

\Rightarrow intra-pulse feedback

- operates at high frequency and acts within a bunch train
- removes the relative offset jitter at the IP by measuring the beam-beam deflection angle and steering the beams back into collision

Overview

- $\Rightarrow \mathsf{static} \ \mathsf{alignment}$
 - dispersion free steering
 - singular values analysis
 - response to quadrupole and bpm misalignments, and to corrector strengths
 - (i) systematic noise
 - pulse-to-pulse motion \rightarrow give a constraint to the orbit correction gain
 - uncorrelated quadrupole jitters \rightarrow tolerance
 - (ii) instrumentation noise
 - bpm noise on orbit correction \rightarrow is 100 nm bpm resolution sufficient?
 - bpm noise and fast beam-beam feedback
 - (iii) ATL slow motion:
 - orbit correction over a long time scale \rightarrow how long can we run?
 - orbit correction algorithms comparison

Simulation Parameters

- CLIC parameters as defined in May
 - bunch charge : $4 \cdot 10^9$ particles
 - bunch separation : 0.667 ns
 - vertical emittance : 20 nm
 - repetition rate : 50 Hz
 - bunch length : 44 $\mu {
 m m}$
 - bds lattice version : L^{\star} = 4.3 m
- In the BDS we have..
 - 67 quadrupoles
 - 67 dipole correctors
 - 79 beam position monitors

(Static) Alignment of the BDS

- \bullet the system is strongly non-linear
- it is better to align the collimation system and final focus independently
- the final focus is still an open problem...

 \Rightarrow We decided to calculate the response matrix R neglecting the synchrotron radiation emission

Static Alignment

Dispersion Free Steering in the BDS

- using a test beam with energy $E = 98\% E_0$
- alignment in 4 steps...

test beam 98% nominal energy, ω_1/ω_0 =1e5, σ_{bpm} =0.1 µm, misalignment 10 µm

 $[\]Rightarrow$ the final emittance is enomous

Static Alignment

Dispersion Free Steering in the Collimation System

- using one test beam with $E = 98\% E_0$
- alignment in 4 steps...

Static Alignment Dispersion Free Steering in the Final Focus

- assuming a perfect collimation system and $E = 98\% E_0$ for the test beam
- alignment in 4 steps...

 \Rightarrow the alignment of the final focus is an open problem

Static Alignment SVD Analysis of R and Weight of the Components

Dynamic Effects: Systematic Errors

Luminosity Loss due to Pulse-to-Pulse Motion

 \Rightarrow lower limit for the slow orbit feedback gain

- ground motion model B (medium noise)
- (ideal implementation of an) orbit correction algorithm

$$y_{n+1} = \Delta y_n + (1-g) \ y_n$$

- Δy_n ground motion vibration at time step n
- \boldsymbol{g} gain of the orbit feedback
- y_n element position at time step n, for each element.
- final doublet is stabilized
- beam-beam feedback to correct beam offset at the IP
- Simulation
 - 1. ground motion
 - 2. the orbit feedback runs until stability is reached
 - 3. the beam-beam runs to correct the offset

Systematic Errors Loss due to Pulse-to-Pulse Motion

- lower limit for the orbit feedback gain

 $\Rightarrow \Delta L < 2\%$ for: $g_y > 0.05$

Instrumentation Noise Luminosity Loss due to Bpm Resolution

- we want to study the effect of the instrumentation noise
- perfectly aligned BDS
- realistic orbit correction, using...
 - all bpms
 - all correctors (svd cut in the singular values)

Instrumentation Noise Luminosity Loss due to Bpm Resolution

 \Rightarrow to find the upper limit for the gain

• scan of the x and y gains

Systematic Errors Quadrupole Jitter Tolerance

- Two cases
 - 1. all quadrupoles jitter
 - 2. final doublet stabilized
- beam-beam feedback is running
- old parameter set : $\epsilon_y = 10$ nm

 \Rightarrow stability of 0.5 nm for quadrupoles and 0.1 nm for final doublet quadrupoles

Systematic Errors Quadrupole Jitter Tolerance

- new parameter set
- all quadrupoles jitter
- beam-beam feedback is running
- no jitter within the train

- average of 40 seeds

Residual Errors

Luminosity preservation over long time scales

 \Rightarrow Shows how long we can run with this feedback loop

- ATL ground motion
- orbit feedback
 - all correctors (w/o svd)
 - all correctors with bpm and corrector weights
 - MICADO: picks out the best correctors
- beam-beam feedback to correct beam offset

Residual Errors Luminosity preservation over long time scales

• 1-to-1 correction + beam-beam

 \Rightarrow the luminosity can be preserved for about 10000 seconds

Residual Errors Orbit Correction Convergence

• ATL motion for 1000 seconds

 \Rightarrow 1-to-1 correction, with no cut in the singular values shows poor performance \Rightarrow 1-to-1 correction, with cut in the singular values show good performance \Rightarrow MICADO, with 24 correctors, does not seem to improve particularly

Orbit Correction MICADO Patterns

- 16 correctors selected
- histograms for t=1, 10, 100, 1000, 10000, 100000 seconds (top to bottom)

Conclusions (for $L^{\star} = 4.3 \text{ m...}$)

- the tools to perform these integrated simulations have been provided by placet-octave and guinea-pig
- static alignment
 - 1) collimation system aligned using dispersion free steering
 - 2) final focus still to be aligned
- dynamic alignment
 - 1) it has been proved that
 - \Rightarrow quadrupole jitter tolerances are relaxed
 - \Rightarrow 100 nm bpm resolution seem to be sufficient
 - 2) the optimal gains for the orbit correction feedback have been found

 $? < g_x < 0.2$ $0.05 < g_y < 0.3$

3) long time scale simulations show that slow orbit correction and fast beam beam allow to run for ≈ 10000.0 seconds without further corrections