DC spark experiments for CLIC : test of new materials, heat treatments and breakdown rate measurements

Antoine Descoeudres,

Sergio Calatroni, Mauro Taborelli

CLIC meeting 2nd november 2007

Outline

- Experimental setup
- New materials tested (since last presentation by Trond, in january 07)
- Heat treatments of Mo and Cu in oven
- Breakdown rate results
- Conclusions

Experimental set-up

vacuum chamber (UHV 10⁻¹⁰ mbar)

- max. field : 12 kV / 20 μm = 600 MV/m
- typ. spark energy : ½ · (28nF) · (10kV)² = ~ 1 J

Types of measurement

- A) Field emission $\rightarrow \beta$
- B) Breakdown field $E_b \rightarrow$ conditioning curve, saturated field $\overline{E_b}$
- \mathcal{L} C) Breakdown rate \rightarrow breakdown probability vs field

Outline

- Experimental setup
- New materials tested
 - Heat treatments of Mo and Cu in oven
 - Breakdown rate results
 - Conclusions

Conditioning curves of pure metals

assumption: 'good material' = refractory ; oxides easily reduced

Alloys

Thanks to PX Group and to Gonzalo for the sample.

• Tungsten carbide (10% Co) (tests are running now)

Thanks to DIXI Polytool and to Gonzalo for the sample.

Stainless Steel (316LN)

- very high saturated field
 - \succ $\overline{E_b}$ = 830 MV/m

- fast conditioning speed
 - > 20 sparks
- gap quite stable (similar to Mo, Cu)
- very small beta value after conditioning
 > β ≈ 6
- large standard deviation (E_b)
 - > σ ≈ 200 MV/m
- Such high fields are critical for this setup!
 - > gap \approx 9 μ m, really small...
 - SS: low conductivity. Add Cu coating ?

	Ē _b [MV/m]	<β>	βE_{b} [GV/m]
Cu	170	46	7.8 (±1.3)
Мо	430	16	6.9 (±1.9)
SS	830	6	5 (±1.4)

Ranking of materials

conditioning speed

Cu	"immediate"						
SS	~ 20 sparks						
Mo, Ti	~ 50 sparks						
V	~ 100 sparks						

gap instability

Мо	< 15 %						
Cu, SS	< 25 %						
Ti	< 50 %						

(max. gap variation after a full conditioning experiment)

- broad range: 100 1000 MV/m
- difficult to point out 1 dominant physical property, combination of several ones (melting point, heat of fusion, thermal conductivity, electrical conductivity, vapour pressure, surface tension, work function, ...)

Other materials

 Metals with 2 µm DLC coating (idea: increase thermal conductivity to evacuate heat)

ready to be tested : Ta

Cu + Cr coating 'home-made' Ti-Mo Mo, W machined with EDM chemically polished Cu

Outline

- Experimental setup
- New materials tested
- Heat treatments of Mo and Cu in oven
 - Breakdown rate results
 - Conclusions

Ex-situ heat treatment in oven (Mo, 2h)

Ex-situ heat treatment in oven (Mo, 2h)

XPS measurements :

Amount of Mo oxides at the surface reduced after heat treatment

Hardness measurements : 1000°C and 1200°C samples are recrystallized,

Thanks to Alex Gerardin for the measurements.

875°C sample is *not* recrystallized

conditioning speed improved by oxides reduction 2h at 875°C is a good choice (to be tested soon on RF structures)

Effect of dry air exposure after heat treatment (Mo 875°C)

 no significant degradation on virgin spots after 8 hours exposure (~ mounting time of structures in CTF)

• confirmed by XPS : oxidation still negligible after 8h air exposure

Effect of dry air exposure after heat treatment (Mo 875°C)

 small degradation on conditioned spots after 4 hours exposure

conditioned spot : more reactive to oxide formation

Ex-situ heat treatment in oven (Cu, 2h)

• Slight improvement in saturated field (10%)

Thanks to the brazing team for the treatment.

• Saitama University results (1996)

Kobayashi et al., Vacuum 47 745 (1996)

Outline

- Experimental setup
- New materials tested
- Heat treatments of Mo and Cu in oven
- Breakdown rate results
 - Conclusions

Breakdown rate : procedure

- 1. conditioning of the spot
- 2. find field for BDR = 1
- to reach lower BDR, decrease field by 25 MV/m steps at least
 (≈ max. variation in E due to gap changes during 1 run, max. 'precision' in E)
- works not well by increasing E : sparks mostly grouped at the beginning of the run (due to emitters located in the 'uncleaned' area?)

- ~ 6 sec / attempt
- experimentally difficult to go under a breakdown probability of 10⁻⁴ (time consuming, poor statistics, frequent mechanical problems with HV switch)

Breakdown rate : sparks distribution

• breakdowns are randomly distributed, but come often by groups

Breakdown rate vs field : RF (30 GHz)

→ Points are aligned in a log(P) vs E plot. And in DC ?

Breakdown rate vs field : DC

Same trend as in RF measurements \rightarrow comparison possible

<u>NB</u>: low BDR @ saturated field (~ 10^{-2})

Breakdown rate vs field : RF & DC (1st version)

Breakdown rate vs field : RF & DC (2nd version)

Normalization : 'how many decades do we gain if we decrease the max. field by X%'

RF & DC slopes are different for Cu, similar for Mo Mo steeper than Cu in DC

Outline

- Experimental setup
- New materials tested
- Heat treatments of Mo and Cu in oven
- Breakdown rate results
- Conclusions

Summary

- Various metals and alloys have been tested (E_b, cond speed, gap stability)
 - Stainless Steel : highest saturated breakdown field, gap stable
 - difficult to understand the ranking of materials...
- Heat treatment of Mo
 - increase in conditioning speed by removing oxides
 - > no deterioration after 8h air exposure
- Heat treatment of Cu
 - ➢ slight increase in saturated field
- DC breakdown rate measurements
 - Breakdown probability increases exponentially with applied field
 - ➤ DC RF : different slopes, Cu steeper than Mo (?)

Outlook

- Continue tests of materials, coatings & surface preparation
- More breakdown rate
- Optical Emission Spectroscopy of the spark (feedthrough with optical fiber)
 - > composition, temperature, density
 - ➢ pre-breakdown
- 2nd DC spark system will run in a few weeks...

lots of work done by Yngve Levinsen

> up to 30 kV

- > energy of sparks can be changed
- ➢ run BDR and tests of materials in parallel

Thank you !

Slope ?

• Schematic pulse length dependence in RF (same structure)

Materials properties

	sat. brkd field	melting point	boiling point	heat of fusion	heat of evaporation	thermal conductivity	electrical conductivity	vapor pressure at melt. point	vapor pressure at 1080°C	vapor pressure at 1680°C	surface tension	density	z	work function
	MV/m	°C	°C	J/mm ³	J/mm ³	W/mK	108 Ohm ⁻¹ m ⁻¹	Pa	Pa	Pa		kg/m ³		eV
Cu	170 (7)	1083 (9)	2567 (8)	1.8 (7)	42 (7)	401 (1)	59.6 (1)	0.05 (1)	5E-2 (8)	2E2 (7)		8920	29	4.65
w	315 (6)	3410 (1)	5660 (1)	3.7 (1)	87 (1)	174 (2)	18.9 (2)	4.27 (7)	4E-21 (1)	7E-11 (1)		19350	74	4.55
Nb	400 (5)	2468 (4)	4742 (3)	2.4 (4)	63 (3)	53.7 (6)	6.9 (6)	0.075 (2)	1E-15 (3)	4E-7 (3)		8570	41	4.3
Мо	440 (4)	2617 (3)	4612 (4)	3.4 (2)	63 (3)	138 (3)	18.7 (3)	3.47 (6)	2E-13 (4)	1E-5 (4)		10200	42	4.6
Cr	470 (3)	1857 (6)	2672 (7)	2.3 (6)	48 (6)	93.7 (4)	7.7 (4)	990 (8)	7E-3 (7)	4E2 (8)		7200	24	4.5
v	660 (2)	1890 (5)	3380 (5)	2.4 (4)	53 (5)	30.7 (7)	4.9 (7)	3.06 (5)	8E-8 (5)	1E-1 (5)		5960	23	4.3
Ti	780 (1)	1660 (7)	3287 (6)	1.5 (8)	40 (8)	21.9 (8)	2.3 (8)	0.49 (3)	2E-6 (6)	5E-1 (6)		4540	22	4.33
SS	830	~1510 (8)				15	1.3					7950	-	
Та	?	2996 (2)	5425 (2)	2.9 (3)	68 (2)	57.5 (5)	7.6 (5)	0.77 (4)	1E-19 (2)	1E-10 (2)		16600	73	4.25
wc	310	2780	6000			84	1.4					14450	-	

