Drive Beam Long Transfer Line

B. Jeanneret CERN AB/ABP Clic Meeting , 30 nov 2007

Outline

- DB complex schematic
- Long transfer line
- Turn-around and dump
- Combiner rings : Synchrotron Radiation
- Open issues
- Summary

Drive Beam schematic

Drive Beam structure

- A constant beam loading in the DB linac implies : $2L = 2C_1C_2\lambda$
- $\lambda = c\tau$ fixed by RF, presently : $\tau = 241.6$ ns , $\lambda = 72.5$ m
- \rightarrow L_{station} = 870 m (+ 8 m for DB dump)
- Total pulse length in DBL : $\tau_{DBL} = 2N_{station}C_1C_2\tau = 1.39e-4 s$
- NOTE : each time τ is changed, N_{station}, C₁, C₂, drawings, etc must change as well → How many changes can we afford until 2010 ?

Long transfer line

- Straight 21km long line (twice)
- Optimise for performance and cost
- Specify vacuum requirements
- Specify vacuum chamber radius
- Specify magnet requirements

Long DB transfer line

- Aim : transport the Drive Beam trains from the central area of the site towards the head of the Main Linac
- Deflect a train in each turnaround, one after the other

FODO optimisation – use thin lens formalism

Ref. thin less formalism: S.Y.Lee, Acc physics, p.54 E.Keil, in HAPE p.60

Number of cells

$$V = rac{L_0}{\hat{eta}} rac{1 + \sin rac{\mu}{2}}{\sin \mu}$$
 .

Total magnet power (considering resistive wall)

 $A_p(\hat{\beta},\mu) = \frac{1}{\hat{\beta}^{5/3}} \frac{(1+\sin\frac{\mu}{2})^3}{\sin\mu\cos^2\frac{\mu}{\pi}}$

kick by random quadrupole displacement

 $\frac{\Delta_x}{\sigma_{\beta}} = \frac{1}{\hat{\beta}} \sqrt{\frac{L_0}{\epsilon}} \frac{2(1+\sin\frac{\mu}{2})}{\cos\frac{\mu}{2}\sin^{1/2}\mu} \times \delta_x$

Chromaticity $C = -\frac{L_0}{\pi L} \tan \frac{\mu}{2} = -\frac{L_0}{2\pi \hat{\beta}} \frac{1+\sin \frac{\mu}{2}}{\cos^2 \frac{\mu}{2}}$

These functions all factorise :

$$f(\hat{eta},\mu) = g(\hat{eta}) \, h(\mu) \sim rac{1}{\hat{eta}^n} h(\mu) \;, ext{with} \; n>1 \; \;.$$

Further calculations : with $\mu = 45^{\circ}$ and $\varepsilon = 2e-8$ m β_{max} and L_{cell} : as large as possible, except if collective effects exhibit an optimum β_{max} , see below

BJ. Drive Beam TLine

Chromatic effects

- Total phase advance : v = 0.25 Ncell = 26.5
- Detuning Δν (δp = 0.02,L=100m) =~ 0.6 → +- 220 deg
- Kicks from random Quad misalignment
 - \rightarrow Δ (dx = 10⁻⁴ m , L₀ = 21 km) = 1.7 σ_{β}
 - Beam fully filamented
- Operability : better use a static solution, if possible at reasonable price
- Use chromatic correction, need
 - Sextupoles
 - A dispersion wave (D = 0.5-1.0 m) made with dipoles at the entrance of the line, to be closed after the entrance of every turnaround
- Still to be worked out (but see below for the sextupole strength)

Vacuum and ion issues

Ref. Y.Baconnier, CERN PS 84-24 A.Poncet , CERN YR 99-05

- The electron beam ionises the residual gas T.Raubenheimer, SLAC Pub 5893
- Electrons are repelled rapidly (light objects)
- Ions are attracted (or focused) by the beam and can be trapped inside (so called 'neutralisation' of the beam')
- → induces tune-shift & tune spread

Mean free path for electrons to produce a ion :

$$\rho_{\rm lin,ion,train} = \frac{p_{\rm Torr} N_{\rm e,train}}{\lambda_0}$$

 $\lambda = \frac{1}{\rho_{\rm gas}\sigma_{\rm ion}}$

CO, pressure 1Torr : $\lambda_0 = 0.16$ m

With 'standard' pressure (no getter, no bake-out) One DB train , Ne = 1.5^e14, p=10⁻⁸ T : $\rho_{lit} = 9.4^{e}6$ ion/m

Ion effects - I

X [m]

0.0

A>10⁻⁴ trapped inside train A< 10⁵ untrapped between trains CO : A=28

X [m]

Ion effects - II

 $\Delta \nu = C \, \frac{\beta_{\beta} r_0 \rho_{\rm lit} L_{\rm ML}}{8\pi \gamma \sigma_{\beta}^2}$

- C = 1 for equal beam & ion shapes
- Ratio at peak : C =~ 3
- $\Delta v = ~ 0.45 \text{ at } 10^{-8} \text{ Torr}$
 - Between head and trail of train
 - Between small and large (> σ_β) amplitude
 - \rightarrow filamentation again
- If the trains 'snake'
 - lons and beam not always on the same orbit
 - \rightarrow instabitilities on top
- → 'standard' 10⁻⁸ Torr not adequate → Need 10-100 times better (getter + bake-out) → $\Delta v < 0.01$

Collective effects - I

Thanks to key advice of S. Fartoukh

Ref: O.Henry and O.Napoly Res. Wake potentials for short bunches, CLIC Note 142

• Worst case identified : resistive wake field induces transverse instability

$$\frac{dx'}{dz} = \frac{ne}{E} \frac{c}{\pi a^3} \sqrt{\frac{Z_0}{\pi \sigma}} \frac{1}{\sqrt{s}} \Delta_{\mathbf{x}} = W_{\perp} \frac{1}{\sqrt{s}} \Delta_{\mathbf{x}}$$

 $\Delta_{\rm x}$: CO error + vac.ch. displacement of a head bunches dx'/dz : kick to a test particle at distance s behind

Total displacement of the last bunch :

- Sum over all bunches :

$$\frac{\delta x'}{dz} = W_{\perp} \Delta_{\mathbf{x}} \sum_{i=1}^{N} s_i^{-1/2} \simeq 2 \sqrt{\frac{N-1}{s_b}} W_{\perp} \Delta_{\mathbf{x}}$$

-Quadratic sum over M half-period $l_{\rm hp}$ over L_0 , and convert to a normalised transverse displacement :

$$\Delta_n = \Delta_{\rm x} \sqrt{2M(N-1)} \ l_{\rm hp} \sqrt{\frac{\overline{\beta}}{\epsilon s_b}} W_{\perp}$$

DB transfer line with

L=100m, μ = π /4, Δ x=1mm rms

Normalised displacement (last bunch)								
V.C. radius [m]	SS	AI	Cu					
0.02	19.71	3.94	3.04					
0.04	2.46	0.49	0.38					
0.06	0.73	0.15	0.11					
0.08	0.31	0.06	0.05					
0.1	0.16	0.03	0.02					

Stainless steel ruled out

 \rightarrow Al/Cu , radius R >= 60mm

dE/E loss over L_0 : 10⁻⁴

CLIC meeting 30nov07

BJ, Drive Beam TLine

Collective effects - II

- Simple model is optimistic (rigid train except for the last bunch)
- Test case compared with code of G.Rumolo
 - Same result if amplification of initial displacement is ~10%
 - Rapidly diverging beyond
- The vacuum chamber radius near R = 60 mm will be fined tuned once the optics is fixed (and cost optimised)
- Vacuum chamber (and magnet) dimensions will also be governed by this effect in the Combiner Rings
 - There lies a potential conflict with CSR which requires small vertical aperture

Collective effects - III

• Main Beam TL

- E larger, bunches less populated and more spaced
 - \rightarrow better by a factor ~200
- But vertical beam size ~ 200 times smaller
- \rightarrow same conclusion for the radius of the vacuum chamber
- Damping rings : need check ?
- ILC damping rings : longer trains but larger bunch separation : large effect, feedback system foreseen (Wang, Bane, Raubenheimer, Ross EPAC 2006)

Magnets (with M.Bajko)

- Small power allows to consider cos(nθ) magnets, all in one yoke
 - Compact and light, adequate for installation at the ceiling of the tunnel

• (Option :

 permanent magnet for ~90% of the Quad GL

- powered trim-Q + S + B)

CLIC meeting 30nov07

Quadrupole data variations

	Quad for dri	ve beam of cl	lic aperture	radius 0.06	m		
Parameter name	Symbole	Value					
Integrated gradient		0.13	0.131	0.132	0.128	0.133	Tm/m
Magnet length	L	1	1	1	1	1	m
Current density	j	5	4	3	2	1	A/mm2
Current	I	39	44	58	72	40	А
Total nr of turns	а	19	17	13	10	19	
Nr of layers	n_layer	1	1	1	1	2	
Winding width	hsec	3.3	3.8	4.6	6.2	6.5	mm
Wire dimension outside	ew	3.3	3.6	4.8	6.2	6.6	mm
Dissipated power in magn	et Pmagnet	534	431	326	208	109	W
Nominal voltage	Vmagnet	13.7	9.8	5.6	2.88	2.7	V
Nr. Of magnet /sector	nsector	16	16	16	16	16	
Total voltage of a sector	Vsector	219.2	156.8	89.6	46.08	43.2	V
Cooling channel radius	Rcool	1	1	1	1	1	mm
Pressure drop	DP	6	6	5.8	5.7	5.8	atm
Temperature rise	DT	36	27	18	10	7	K
Water flow	qm	0.213	0.229	0.26	0.3	0.21	l/min
Weigth of windings	Mmagnet	11.2	14	18	27	57	kg
Price of Copper wire	Price	324	409	550	787	1663	EUR
Price of electricity		0.022	0.022	0.022	0.022	0.022	EUR/kWh
Price of electricity for 1 magnet in 1 day		0.282	0.228	0.172	0.110	0.058	EUR
Difference of price		0	85	226	463	1254	EUR
Nr of days for justify the price difference		0	374	1313	4216	21789	days

Can make it with:

- 300 W /mag. (Q+B+S)
- Weight ~ 100kg
- Comfortable electrical parameters

Remains to be done

Integrate B+S

- Detailed Field map study (and tracking with beam)
- Optimise Ncell vs. vacuum chamber radius for cost (Pedro C.P. gave me prices for vac system)

Data M. Bajko

CLIC meeting 30nov07

Turn-around and Dump

Turnaround as of today , F. Stulle/PSI

Main tunnel cross-section

DB after the kicker

- Re-evaluate the best transverse position of the DBTL, i.e. move it towards the side ?
- Understand if the tunnel size and occupancy will change (new input for air and water, oct07)
- Make use of the kicker to cancel the dispersion wave of the TL, to avoid complications with chicanes
- 3D-model of the beam under work (Alexander Sumoshkin, Germana), optics of F.Stulle to be adapted

DUMP Avoid magnets here

A way to avoid alternating low and high Decelerators – now baseline

Combiner rings

- Synchrotron radiation issues
- Open studies

SR issues - I

SR issues - II

CLIC meeting 30nov07

SR issues - III

- Crude SR study indicates:
 - SR is absorbed in a thin inner layer of the vacuum chamber
 - → Transient temperature rise of the order $\Delta T = 80 + -?$ K at repetition frequency f=50Hz → ageing ...
 - Good vacuum requires getter at room temperature ...
- → Need precise time-dependent thermal, mechanical and vacuum model, to be worked-out
- Coherent synchrotron radiation can/must be screened with adequately small vertical aperture, but possible conflict with wakefields reduction (large size, see above)

ESRF : I=100mA, E=6GeV, Power=3kW/m, E_{γ}=20KeV, λ =1mm C1 : I_{av}=58mA, E=2.4GeV, Power=1.0kW/m, E γ =6KeV, λ =0.05mm

CLIC meeting 30nov07

Open studies for Delay Loop and Combiner Rings : (Fully-) Open studies

- Linear optics to be built for
 - Synchronous and chromatically-corrected rings
 - Then sensitivity/robustness studies
 - Tune + orbit errors → synchronicity errors
 - Tune error $\rightarrow \beta$ -beating \rightarrow mismatch downstream, emittance growth
- Source of errors
 - EM collective effects (25 \rightarrow 100A in four turns)
 - Ions production (vacuum degraded by SR)
 - Δv growing along trains + instabilities ?
- Synchrotron radiation & Thermal issues
 Coordinated studies with vacuum experts

Acknowledgments

- Marta Bajko , AT/MCS
- Pedro Costa Pinto, TS/MME
- Stephane Fartoukh
- Frank Stulle, PSI
- Giovanni Rumolo
- Thomas Zickler, AT/MEL,

and my colleagues in ABP/CC3

Summary

- Long transfer line: well advanced
 - Need good (getter+bake-out) vacuum (ions)
 - Vacuum chamber R >= 60mm, Al or Cu (multi-bunch resistive wake-fields)
 - Cell with L =~ 100m , phase advance 45° , with chromatic correction
 - to be fine-tuned with turn-around integration
 - A pre-design of a combined magnet exists need consolidation, then overall cost optimisation
 - A MadX sequence can be ready in a near future
- Delay loop and Combiner rings
 - SR issues : dynamic thermal problems, to be explored precisely (also CSR/wake field/R_vac)
 - Optics : entirely open area
- Turnaround and compression:
 - good optics exists (F. Stulle), to be adapted to hardware constraints
 - Integration to be fully made (what is needed for 2010?)
- Dump line (and dump)
 - A 'proof of existence' exist which allows to avoid two heights of decelerator
 - Realistic study matched with the turnaround to be made
 - Dump proper : specify spent beam impact map
- → priorities to be established for 2010