HIGHER CURRENT AND HIGHER REPETITION RATE: WHAT WOULD BE THE CONSEQUENCES ON THE CTF3 INJECTOR ?

H. Braun

CTF3 power mode vs. nominal parameters

	2 CII_{-}		1	ale area /	lavra ala	la se a la			le a a rea
	3 GHZ	puise	beam	charge /	bunch	bunch	rep.	mean	beam
	power /	length	current	pulse	frequency	charge	rate	current	energy
	structure								
initial	30 MW	1.56 µs	3.5 A	5.5 μC	3 GHz	1.16 nC	5 Hz	27.5 μΑ	150 MeV
	20 MW	1.7.6	25 4		1.5 CH-	2.22	5 II-		150 M-N
nominal	30 M W	1.56 μs	5.5 A	5.5 μC	1.5 GHZ	2.33 nC	5 HZ	27.5 μΑ	150 Mev
power mode	60 MW	200 ns	5 A	1μC	3 GHz	1.66 nC	30 Hz	30 µA	204 MeV
rive been injector				drive b	eam linac	special 30 GHz transfer			Beam dump
				dirve b			struct	ure	
cleaning chicane								lor	
(used for building 30 GHz power compression in "power mode")									
30 GHz pro							ototype		
accelerati							ccelerating	g structure	

Why a request for a new mode of operation ?

Recently the appearance of heavy damage in 11.4 GHz NLC prototype structures as well as in 30 GHz CLIC prototype structures unleashed a considerable R&D activity to overcome these problems of "show stopping" potential.

In this context it became apparent that:

The CLIC study needs a 30 GHz high power RF source in between end 2001 (CTF II shutdown) and 2005 (CTF3 nominal phase) !

Moreover, it became clear that it would be desirable to have a repetition rate higher than the nominal 5 Hz of CTF 3 to speed about RF conditioning and to do long-term structure fatigue tests.

	CTF II	CTF 3	CLIC	ideal source
		nominal	(one	for prototype
		phase	structure)	testing
frequency	30 GHz	30 GHz	30 GHz	30 GHz
power	200 MW	300 MW	240 MW	300 MW
pulse length	3-15 ns	140 ns	120 ns	5-150 ns
rep. rate	5 Hz	5 Hz	100 Hz	100 Hz

Options considered for 30 GHz power source for prototype testing:

- 1. extension of CTF II running until end of 2002
- 2. development of a high power gyroklystron in industry (lead time ≥ 2 years)
- **3. intermediate CTF3 power source using the CTF3 drive beam linac of the initial phase (available end of 2003)**
- 4. increasing the CTF3 repetition rate to 30 Hz

Options 3 & 4 have consequences for the injector design.

Implications for injector:

- gun has to provide peak current consistent with 5 A of beam current after bunching and energy scraping
- the gun pulser has to provide a variable pulse-length of ideally 10 ns-1540 ns
- the gun pulser has to be able to cope with the higher repetition rate
- the charge per pulse in high current mode is less than nominal and the mean current from the linac increases by a small amount compared to nominal parameters. Thus the gun HV supply specifications are not affected !
- the "power mode" uses the initial phase injector layout (using two 3 GHz prebunchers, no SHB's)
- the single bunch beam dynamics of the initial phase has to be checked for 1.7 nC single bunch charge (less than nominal!)
- the 3 GHz prebunchers have to be able to cope with the increased beam-loading
- the buncher has to be capabable to cope with the increased beam-loading. Contrary to all other accelerating structures the buncher input power cannot be increased significantly for the "power mode", since no RF pulse compression is used for the buncher.
- the "power mode" has to be available in the CTF3 initial phase, that means 2003
- Modifications for the "power mode" should not compromise the nominal performance by a significant amount !