CTF3 drive beam injector

- requirements
- initial phase concepts, problems and remedies
- nominal phase options bucket switching
- schedule
- contributions from collaborating institutes

<u>Requirements</u>

Parameter	Initial	Nominal	Unit
Pulse length	1.54		μs
Beam current	3.5		А
Charge per pulse	5390		nC
Bunches/pulse	4620	2310	
Charge per bunch	1.17	2.33	nC
Emittance, norm., r.m.s.	< 100	< 100	mm-mrad
Bucket switching	none	every 140ns	
Allowed charge in Satellite	-	<7	%
Bunch spacing	0.33	0.67	ns
Bunch length (rms)	< 5	< 5	ps
Energy spread (single bunch rms)	< 0.5	< 0.5	MeV
Energy spread (total on flat top incl. Beam loading)	< 1		MeV
Charge variation bunch to bunch (>20 MHz)	< 2		%
Charge flatness total on flat top (<20 MHz)	< 0.1		%
Beam repetition Rate	5		Hz

<u>chicanes</u>

- energy collimation (@18 MeV)
- bunch compression and instrumentation (@ 50 MeV)

Title: layout1.eps Creator: fig2dev Version 3.2.3 Patchlevel Preview: This EPS picture was not saved with a preview included in it.

specific problems initial phase

- total charge per pulse
- charge stability
- bunch length
- energy spread

requirement	potential problems	remedies
total charge per pulse	heavy beam loading	140 ns scavenger train for transients 2 nd prebuncher with external load buncher with large power overhead
		detuned & damped acc. structures
	emittance deterioration & beam break-up	strong focusing
		large apertures
	deterioration of vacuum	all systems can be baked at 150°C
		generous pumping
		large apertures
charge stability	beam loading	reduced bandwidth of grid pulser
	induced energy spread	beam current feedback on grid pulser
longitudinal emittance	downstream longitudinal gymnastics / efficiency of 30 GHz power	graded β buncher
		sophisticated prebunching
		energy collimation
	production	bunch compressor

CTF3 injector variants for nominal phase

RF Photo-Injector option for CTF3 drive beam

Advantages of such an solution:

- + absence of low charge parasite bunches
- + no phase/energy tails as produced in conventional bunching systems
- + design of RF gun for CTF3 parameters straight forward
- + RF gun and photo-cathode technology well established at CERN
- + smaller beam emittances in all three phase space planes
- + much less parameters (2 RF ampl. & phases compared with 6)
- + possibility of single bunch operation for beam monitor development, wakefield, CSR,...

But:

Þ

- laser requirements for producing the long drive beam train very demanding
- past experience with CTF II laser system not very encouraging
- Unprecedented average current requirement for photo-cathodes
 - High current tests of cathodes in PS photo-cathode lab. last winter demonstrated feasibility of cathodes
- R&D program in collaboration with RAL and Strathclyde University for the development of an all diode pumped, solid state laser system

Additional problem nominal phase

 bucket switching every 140 ns with £ 5ns switching time

	Method	Problems	
Thermionic solution	1.5 GHz sub harmonic bunchers with Q»10 driven by 500kW, large	Parasite charge in "empty buckets"	
	b.w. (150 MHz) klystron	Current droop during switching	
Photo injector	Switching of optical delay in laser beam line with pockel cells	Pockel cell driver	
		Pockel cell lifetime	

Contributions from collaborations

SLAC

- design of beam-line initial & nominal phase
- gun triode for initial & nominal phase

LAL

- design and construction of gun electronic (HV, grid pulser, controls electronic,...) and support structure (hot deck,...)
- design and construction of 3 GHz pre-bunchers

RAL

• development of diode pumped laser amplifier for generation of long bunch train with photo-injector

Inst.of Photonics / Strathclyde

• development of diode pumped, pulsed laser oscillator

	Initial phase	Nominal phase		
year		photo injector	thermionic injector	
2001	Design of beamline and all components			
	Construction of components	Build laser configuration for	Design of SHB	
2002 Assembly beamline	Assembly of beamline	PILOT	bunchers, RF networks and modulator	
		PILOT experiment long train photo- injector demo.		
Move CTF II		Decision which solution to take		
	components to CTF3 injector			
2003	Injector commissioning	Upgrade PILOT laser to CTF3 laser	Order and install 1.5 GHz klystron and network	
2004	Injector operation	Build RF gun	components Build SHB's	
2005		Install laser and RF gun	Install SHB's	
		Commissioning of nominal phase		