# Drive Beam Photo-injector Option for the CTF3 Nominal Phase

- **Motivation**
- **& CTF3 Drive Beam Requirements**
- 🌭 CTF3 RF gun design
- ♦ The Laser  $\Rightarrow$  (I. Ross / RAL)
- **b** The Photocathode
- **& Cost estimate**
- Sector Possible schedule



Expected advantages of the photo-injector option compared to the thermionic source :

- $\checkmark$  "Empty" buckets really empty  $\Rightarrow$  reduce losses and the radiation level
- Smaller emittances (transversal and longitudinal) ⇒ easier beam transport and bunch length manipulation.
- ♦ No low-energy tails at the end of the injector.
- Solution Compactness of injector
- ✤ Less expensive



CTF3 Review 2/10/01

## **CTF3 Drive Beam Photo-injector Requirements**

|                                       | Unit              | CTF-3 |
|---------------------------------------|-------------------|-------|
| Pulse charge                          | nC                | 2.33  |
| Pulse width (FWHH)                    | ps                | 10    |
| Peak current                          | А                 | 240   |
| Number of pulses                      | -                 | 2310  |
| Distance between pulses               | ns                | 0.667 |
| Charge stability                      | %                 | ± 0.1 |
| Train duration                        | μs                | 1.54  |
| Train charge                          | μC                | 5.4   |
| Repetition rate                       | Hz                | 5     |
| Mean current                          | mA                | 0.026 |
| Minimum QE at $\lambda_{laser}$       | %                 | 1.5   |
| Minimum lifetime at QE <sub>min</sub> | h                 | 100   |
| Shots during lifetime                 | x 10 <sup>9</sup> | 3.9   |
| Photo cathode produced charge         | С                 | 10    |
| Mean Laser power at the cathode       | W                 | 0.008 |
| Photo-injector Reliability            | %                 | ≥ 95  |

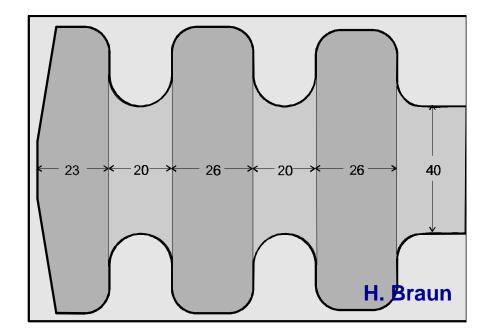


### BUT

(2)

To be taken into account the photo-injector MUST also demonstrate the feasibility for CLIC

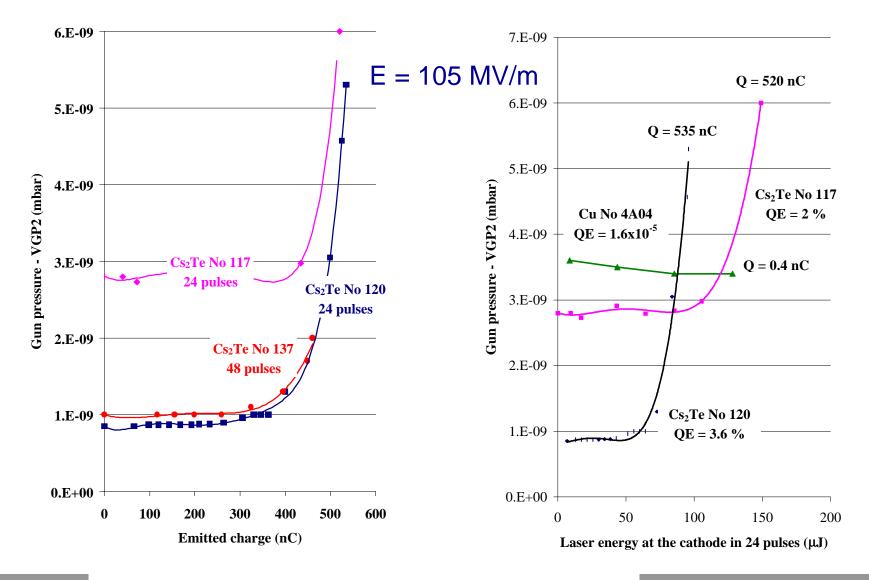
- Solution >> Solu
- ♦ As close as possible of the CLIC working point for the photocathode
  ⇒ This has been done : see CTF3 Note 020


## ↓

The photo-injector should be an option for CTF3 and CLIC ↓ see CLIC Note 487

# **CTF3 RF gun design**

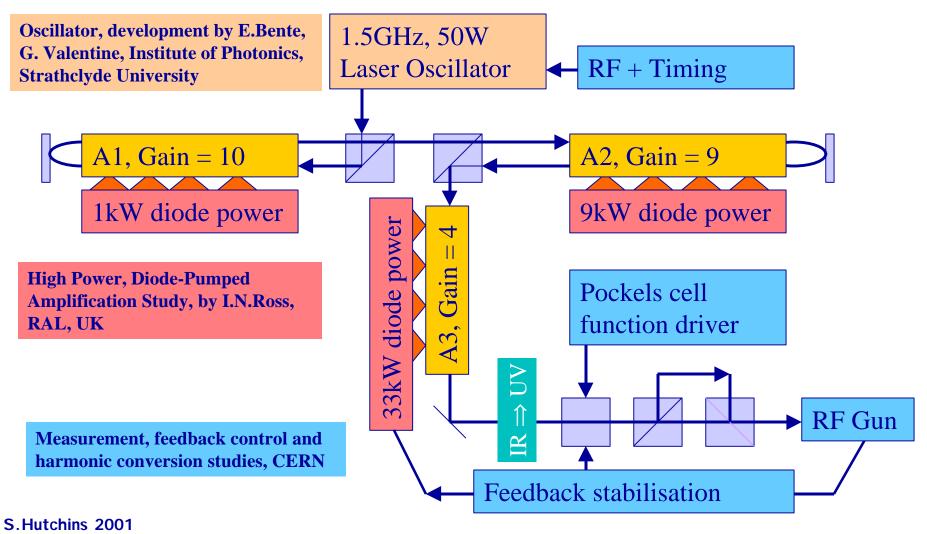
### The design for the RF gun is based on the existing CTF 2 drive beam gun

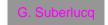

RF frequency 2.99855 GHz RF power 30 MW 5.6 MeV Beam energy Beam current 3.5 A 85 MV/m Peak field on cathode Unloaded Q 13000 2.9 Coupling factor  $\beta$ 400 ns Delay beam /RF



Special attention should be paid to the vacuum pumping speed




### **CTF-2 Drive Beam : RF Gun Desorption ?**



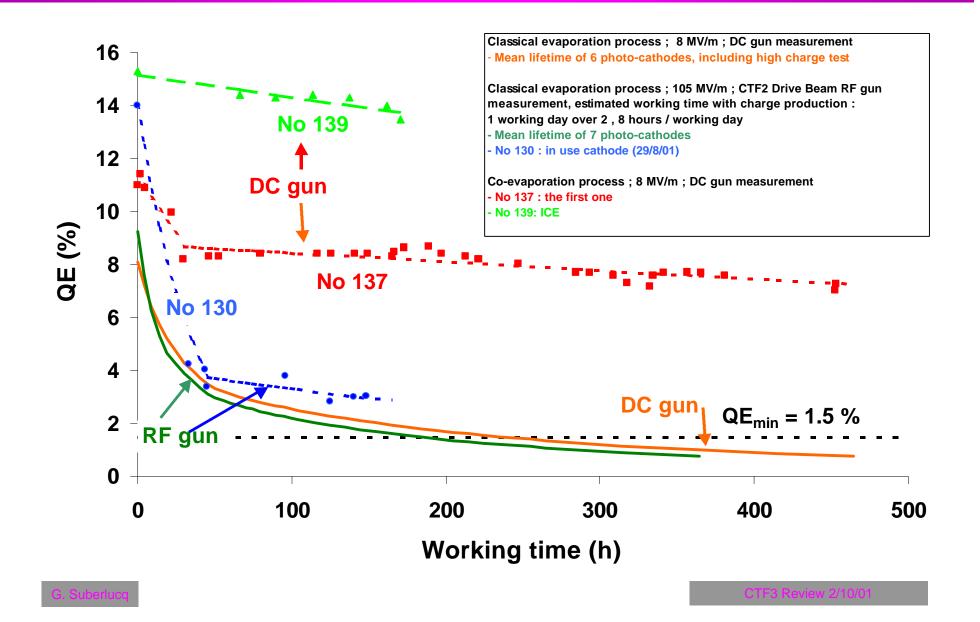

G. Suberlucq

CTF3 Review 2/10/01

### Collaboration RAL, Strathclyde University and CERN






### **Performances obtained at CTF or during the High Q test :**

- **Working wavelength < 270 nm**
- **Maximum electric field : at least 125 MV/m**
- **• Fast response time :** < few ps (measurement limited by instrumentation)
- **b** Low dark current : similar to copper
- **High peak current : up to 10 kA**
- **Macro-pulse charge : 750 nC in 48 pulses, spacing 333 ps**
- High mean current : at least 1 mA 1μC at 1 kHz (limited by laser power and HV power supply)
- ✤ Mean current density : 21 mA/cm<sup>2</sup>
- **Kesistance to laser damage: at least 6 W/cm<sup>2</sup> @ 262 nm**
- ♦ Lifetime : QE > 1.5 % during 460 h @ 750  $\mu$ A, 1.4x10<sup>-9</sup> mbar at 8 MV/m in the DC gun

#### G. Suberlucq

#### CTF3 Review 2/10/01

### Cs<sub>2</sub>Te Photocathode lifetime



# Laser Parameter List (preliminary)

|                 |                                                                  | -                    |                |
|-----------------|------------------------------------------------------------------|----------------------|----------------|
| MO + PA         | Wavelength                                                       | 1047 nm (Nd :YLF)    |                |
|                 | Pulse width (FWHH)                                               | ≤ 10 ps              |                |
|                 | Pulse train duration                                             | > 100 µs             |                |
|                 | Repetition rate                                                  | 5 Hz (100 Hz)        |                |
|                 | Timing jitter                                                    | ± 1 ps               |                |
| МО              | Frequency                                                        | 375 – 750 – 1500 MHz |                |
|                 | Output energy / pulse                                            | 133 – 66 – 33 nJ     |                |
|                 | Output power in the pulse train                                  | 50 W                 |                |
| ıplifier        | Distance between pulses                                          | 0.667 ns             |                |
|                 | Amplitude stability                                              | $\pm 0.1$ % (w       | vith feedback) |
|                 | Wavelength on the photocathode                                   | 262 nm               |                |
|                 | Total efficiency from IR <sub>out</sub> to UV <sub>cathode</sub> | 3.6 %                |                |
|                 | <b>Included</b> safe margin trans. (operation + material)        | 50 %                 |                |
|                 | Charge / bunch                                                   | 2.33 nC              |                |
| An              | Photocathode QE                                                  | 1.5 %                | 4.5 %          |
| Power Amplifier | UV energy at the cathode / pulse                                 | 0.75 μJ              | 0.25 μJ        |
|                 | Output IR energy / pulse                                         | 21 µJ                | 7 μJ           |
|                 | Output IR energy / train                                         | 3.15 J               | 1.05 J         |
|                 | Pulse train mean power                                           | 31.5 kW              | 10.5 kW        |
|                 | Extracted output power / optical pumping power                   | 0.66                 |                |
|                 | Optical pumping power                                            | 47.7 kW              | 16 kW          |



### **Preliminary cost estimate :**

### **Material (without infrastructures and spares) : 0.5 - 1 MCHF**

- ★ Laser : 500 kCHF with QE ~ 4.5 %
- \* Photocathodes : 20 kCHF
- \* RF gun : 100 kCHF

### **Exploitation :**

- material (with spares) : 70 kCHF / year
- manpower : 1 man-year / year



### **Possible schedule**

### **5** Till the end of 2002 : More tests

- Experiments to demonstrate the reliability of the laser as close as possible of the CTF3 conditions (PILOT)
- \* Photocathode lifetime at high QE in the CTF2 and RF gun desorption study
- **End of 2002 : final decision on the CTF3 source**

### If the photo-injector is selected

- Spring 2003 : Main parts will be ordered
- **18 months** will be necessary to build all parts of the photo-injector
- Mid 2004 : Laser-room and infrastructures should be ready to start the laser assembly
- Solution Autumn 2004 : Laser starting-up the RF gun will be ready
- Winter 2004-2005 : RF gun installation with the RF network starting-up and commissioning of the photo-injector
- **Spring 2005 : Operational production of electron beam in CTF3**

