THE 3 GHz RF DEFLECTORS

(D. Alesini)

EFFECT OF THE BEAM LOADING IN DL RF DEFLECTOR(S)

(D. Alesini)

Summary

- Analitycal approach
- Tracking code scheme
- First tracking code results:
-Dynamics with and without beam loading
-Compare between 1 and 2 Deflectors
-Effect of different DL phase advances
-Effect of injection error in position

1) Analitycal approach

Field excited by charge

$\underline{E}_{\text {exc }}(\omega)=-\frac{1}{1+j Q\left(\frac{\omega_{r}}{\omega}-\frac{\omega}{\omega_{r}}\right)} \frac{\underline{E}_{D} \int_{\text {cavity }} \underline{J} \cdot \underline{E}_{D}^{*} d V}{2 P_{D}}$

Excited field in the cavity
For a leading charge $q_{\underline{L}}$ that passes in the center of the cavity $(z=0)$ at the time $t=0$

$$
\underline{J}(\omega)=q_{L} \delta\left(x^{\prime}\right) \delta\left(y^{\prime}\right) e^{-j \frac{\omega}{c} z} \underline{s}_{0}(z)
$$

$$
\begin{gathered}
\underline{E}_{\text {exc }}(\omega)=-\frac{1}{1+j Q \delta_{\text {cav }}} \frac{\underline{E}_{D} \int_{\text {cavity }} q_{L} e^{-j \frac{\omega}{c} z_{1}} E_{z}^{*}\left(r_{q}\right.}{2 P_{D}} \\
V_{\text {excz }}(\omega)=\int_{\text {cavity }} E_{\text {excz } z} e^{j \frac{\omega}{c} z} d z
\end{gathered}
$$

\downarrow Panofsky-Wenzel theorem $V_{\text {excr }}=-\frac{c}{j \omega} \frac{d V_{e x c z}}{d r}$

$$
V_{\text {excr }}(\omega)=q_{L} \frac{c}{j \omega} \cdot \frac{1}{1+j Q \delta_{c a v}} \frac{d}{d r} \int_{c a v i t y} E_{D z} e^{j \frac{\omega}{c} z} d z \frac{\int_{c a v i t y} E_{D z}^{*} \int_{q_{L}}\left(z_{1}\right) e^{-j \frac{\omega}{c} z_{1}} d z_{1}}{2 P_{D}}
$$

2) Tracking code scheme

Train of type 2
(2 passages in the deflector)

Train of type 1
(1 passage in the deflector)

-No beam loading -Perfect injection -Nominal DL phase advance

1 RF Deflector

Effect of the finite RF curvature

2 RF Deflectors

-With beam loading -Perfect injection -Nominal DL phase advance

-No beam loading-Perfect injection -DL phase advance scan

-With beam loading -Perfect injection -DL phase advance scan

-No beam loading

-Injection error in position
-Nominal DL phase advance -2 RF Deflectors

-With beam loading-Injection error in position-Nominal DL phase advance

Conclusions

- Analitycal approach for the beam loading calculations has been used to develop the tracking code
- The tracking code results show that:
-The main effects in term of final positions and angles of the bunches are given by the finite filling time of the structure(s). From this point of view 2 Deflectors gives better results. Feedforward or feedback procedures on the signal exciting the klystron can also reduce this problem;
-The power delivered to the cavity(ies) by the beam is a very small fraction with respect to the power delivered by klystron;
-Effect of different DL phase advances have been investigated showing that DL phases advances near 180 deg can partially cancel the beam "filling time effects";
-Effect of injection errors in position have been investigated showing that the beam loading effects do not magnify the initial errors;

Future developments...

- Other injection error analyses combined with DL phase advance scan
- HOM effects
- ...

