Photocathode performance – design requirements

- **1. Recap of photocathode studies**
- **2.** Standard preparation process : DC and RF gun results
- **3.** Co-evaporation process : DC and RF gun results
- 4. Photocathode studies inside PHIN FP6 E.U. program
- 5. CTF3 requirements
- 6. Civil engineering
- 7. Schedule

Recap of photocathode studies

Since 1991 we tested many sorts of photocathodes :

1. Metallic photocathodes : Al, Au, Cu, Mg, Mo, Sm, Y

- QE < 10^{-3} even with special treatment (etching, laser conditioning)
- QE too low for high charge production : very high powerful laser and/or plasma production at the photocathode. Not suitable for our application

2. Alkali-antimonide photocathodes : Cs₃Sb, K₂CsSb, K₃Sb

- * Need ultra high vacuum
- * Good QE at visible light but lifetime too short (few hours) not suitable for our application

3. Alkali-telluride photocathodes : Cs₂Te, Rb₂Te, RbCsTe, Li₂Te

- * Need UHV
- ***** RbCsTe and Rb_2Te : possible rejuvenation after air exposure by heating or etching
- Cs₂Te : standard photocathode for our applications : few % during weeks at high charge and high electric field (up to 120 MV/m)

4. Other photocathodes : CsI, CsI+Ge, Cs₃As, GaAsO, PLZT, TiO₂

- CsI+Ge had been used from 1994 to 2000 in the Probe Beam RF gun because it is air transportable
- We had no success with the GaAs activation for e-pol. production : preparation chamber not adapted to this application

Photocathodes were deposited on different substrates (Al, Au, Cu, Mg, Mo, Stainless Steel) chemically cleaned and/or cleaned by argon ion bombardment :

Cu with chemical and etching cleaning with RF conditioning seems to be the best for high electric field.

Standard evaporation process

Inside the preparation chamber

Evaporators

Cs-Te photocathode : About 15 nm of Cs over 10 nm of Te Deposited at room temperature

G. Suberlucq AB-ATB

Standard evaporation process : High charge test (mC)

Standard evaporation process : Cs₂Te typical results

Standard evaporation process means : evaporation of an alkaline layer over a tellurium layer on different substratum

Typical results with Cs ₂ Te	DC gun	RF gun
Nom. electric field	8 MV/m	100 MV/m
Peak current	20 A	Few kA
Pulse width (FWHM)	6 ns	10 ps
Mean current	1 mA	8 mA
Best substratum	Au	Cu – Au (?)
Starting QE	4% £ QE £ 15%	2% £ QE £ 8%
Typical lifetime with QE > 1.5 %	Few months (extrapolated)	Few weeks
Working vacuum pressure	10 ⁻¹⁰ mbar	1 – 5 x10 ⁹ mbar
Storage vacuum pressure	few 10 ⁻¹¹ mbar	10 ⁻¹⁰ mbar

CTF2 RF gun desorption

Co-evaporation process

Evaporation at room temperature

	Tellurium	Cesium	
Thickness	1.3 - 11	3.9 - 49	nm
Evaporation rate	0.1 - 0.5	0.5 - 2	nm/mn

G. Suberlucq AB-ATB

 20 cath.
 QE(%)
 Cs/Te

 Min
 8.2
 4

 Average
 14.9
 5.1

 Max
 22.5
 7.2

Co-evaporation process : photocathode preparation

G. Suberlucq AB-ATB

Co-evaporation process : cath. lifetime

G. Suberlucq AB-ATB

Co-evaporation process : dark current measurements

Measurements in the RF gun @ 100 MV/m ; RF pulse duration : 1.5 ms

Standard conditioning process:

Slow increase of the klystron output power by minimizing breakdowns, until 18MW nominal power, corresponding to 100 MV/m. After more than 10 minutes without breakdown, the cathode is considered as conditioned.

	Fresh Cs ₂ Te photo-cath.	Used Cs ₂ Te photo-cath	Chemically cleaned copper plug	ICE cleaned copper plug	ICE cleaned used Cs ₂ Te photo-cath.
f (eV)	3.5	4.1	4.6	4.6	4.6
b From - to	76 - 60	86 - 65	104 - 70	94 - 49	102 - 100
Eq.Radius (nm)	27 - 80	45 - 173	38 - 269	55 - 2616	31 - 37
I _{mean} (mA) at 100MV/m	7.3 – 6.6	6.5	5.2 - 4.8	4.3 - 3.8	3.2

ICE : Argon ion bombardment at 5x10⁻² mbar eq. N₂

G. Suberlucq AB-ATB

Photocathode studies inside PHIN – FP6 E.U. program

Reproducibility of alkali-telluride photocathodes produced by co-evaporation

- * Thickness measurement
- Product quality
- Cleanliness of the substratum
- * Evaporation rate

Study of alkali-antimonide photocathodes produced by co-evaporation

- ★ Cs₃Sb, K₃Sb, Na₂Sb+K, Na₂Sb+Cs, Na₂Sb+K(Cs)
- ***** Photocathode properties at $\lambda = 532$ nm

Comparison between telluride and antimonide cathodes for the CTF3 specifications

Section 2 - Sec

CTF3 photo-injector specifications

			NOMINAL	OPTIO	NAL	Unit
	Pulse train duration (1)		1.548			μs
	Pulse train charge (1)		5434			nC
	Average current in the pulse train		3.51			А
	Number of bunches in the sub-pulse		212	106	53	
	Odd/even sub-pulse width (FWHH)		140.735			ns
	Number of bunches in the pulse train (1-2)		2332	1166	583	
o boom	Charge / bunch		2.33	3	5	nC
e- Deam	Distance between bunches		0.667	1.334	2.668	ns
	Bunch width (FWHH)		10	10	10	ps
	\mathcal{E}_{T} normalized	\leq	25			π.mm.mrad
	Δp/p	\leq	2			% rms
	charge stability	\leq	0.25			% rms
	Repetition rate		1 - 50			Hz
	Mean current @ 50 Hz		271.68			mA
RF gun	RF frequency		2.99855			GHz
	RF power	\leq	30			MW
	Beam energy	\geq	5			MeV
	Beam current		3.51			А
	Vaccum pressure @ nominal charge	\leq	2x10 ⁻¹⁰			mbar
	Cs2Te : QE	3	3	3	3	%
cathodo	Wavelength	<	270	270	270	nm
calhoue	Lifetime	3	40			working hours
	UV energy / bunch @ the cathode		0.368	0.473	0.789	μJ
	Beam radius - min @ the cathode		1	1.4	2	mm
	Beam radius - max @ the cathode		2	2.8	4	mm
	Energy stability @ the cathode (rms)	\leq	0.25			% rms
Laser	Pointing stability	±	0.5			mm
beam	Odd/even sub-pulse width (FWHH)		140.74			ns
conv. and	Odd-even sub-pulse rise/fall time (10%-90%)		2 - 30			ns - ajustable
transport	IR-UV conversion efficiency		0.15			
	Safe margin		0.5			
	Laser beam transport transm.		0.7			
	Pulse shaping and coding transm.		0.7			
	UV cath. energy / Output IR energy		0.037	0.037	0.037	
	Output IR energy / bunch	≥	10	13	21	μJ
Output	Bunch width (FWHH)	\leq	10	10	10	ps
l acor	Wavelength		1047			nm
Laser	Repetition rate		1 - 50			Hz
	Timing jitter	\leq	1			ps rms

(1) With starting bunches

(2) The photo-injector must be able to produce only one electron pulse

G. Suberlucq AB-ATB

CTF3 requirements : photo-injector synoptic

G. Suberlucq AB-ATB

CTF3 Requirements

- Solution Photocathodes with a QE \geq 3 % during at least 40 working hours
- A photocathode production to guarantee a continuous run of at least 6 months

For that we have to do :

- * A complete maintenance of the preparation chamber and of the transport carrier (for CTF2 and CTF3 thermoionic gun area installation)
- * Adapt the RF gun transfer chamber (MPC) to the new gun and to the new sites (we assume the same photocathode plug)
- * Re-use and/or develop an automatic RF conditioning process
- * Pursue photocathode studies mainly to increase the lifetime, the reproducibility, and to fulfill the CLIC requirements
- Design and built new transport carrier and/or MPC for installation in the CTF3 linac area (not scheduled)

Civil engineering : Photo-Injector in the CTF2

Setup for test and commissioning

Civil engineering : Photo-Injector in the CTF3

Photo-injector as the CTF3 source

Schedule inside the PHIN – FP6 – E.U. program

Realization of the photo-injector option in two steps :

Solution Solution Second Second

Solution Sector Secto

- > Installation during the shut-down 2006-2007
- > Commissioning spring 2007