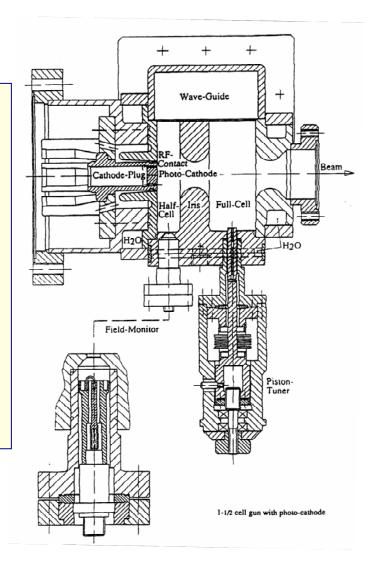
Experience with RF gun in CTF II, Extrapolations for CTF 3

- **Figure Bound For CTF 1+ CTF II**
- Emittance measurements
- **Beam loading issues CTF II vs. CTF3**
- Vacuum effects observed in CTF II
- Photocathode performance
- **Dark current**
- Frequency tuning
- Possible strategy for CTF3 RF gun design

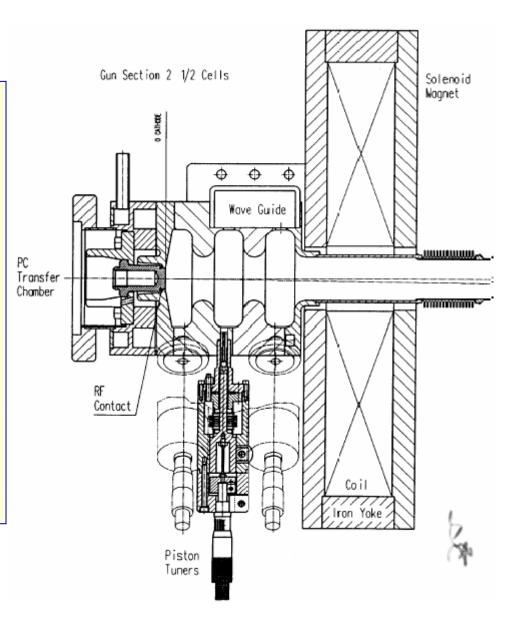

Hans-H. Braun, CTF3 collaboration meeting, 28.9.2003, *with several transparencies stolen from Guy Suberlucq*

CTF Gun type 3

cell geometry copied from BNL design. Used for CTF 1 and CTF II probe beam during many years.

Beam energy 4.5 MeV for 100 MV/m cathode field and 6MW input power.. Operated with up to 120 MV/m cathode field.

Achieved pulse charges of up to 450 nC in 48 bunches and single bunch charges of up to 35 nC


CTF II, Gun type 4

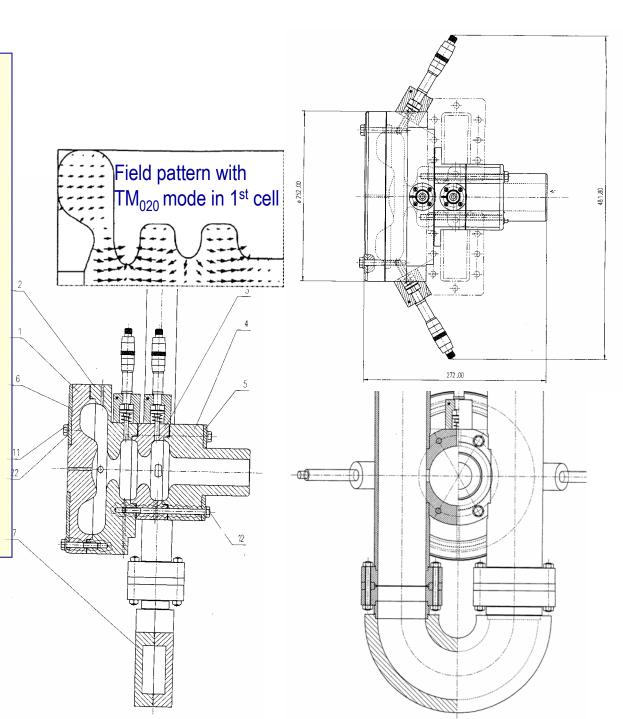
CERN design, optimised for high charge and high stored RF energy, to minimise transient beamloading.

Operated successfully in CTF II for 7 years.

Beam energy 7 MeV for 100 MV/m cathode field and 16 MW input power. Operated with up to 110 MV/m cathode field.

Achieved pulse charges of up to 750 nC in 48 bunches and single bunch charges of up to 100 nC

CTF II, Gun type 5

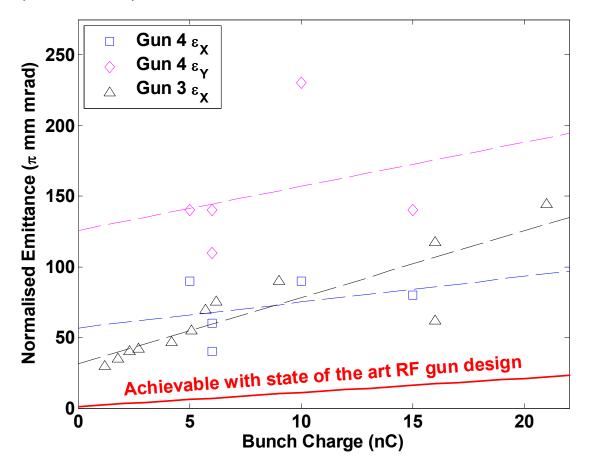

CERN design, optimised for high charge and very high stored RF energy, to minimise transient beamloading.

Tested successfully with high power but never with beam.

Many interesting features

- clever symmetric coupler design
- $\rm TM_{020}$ cell for high stored energy
- elliptic iris shape for low electric surface field

see CLIC note 309/1996 by R. Bossart & M. Dehler



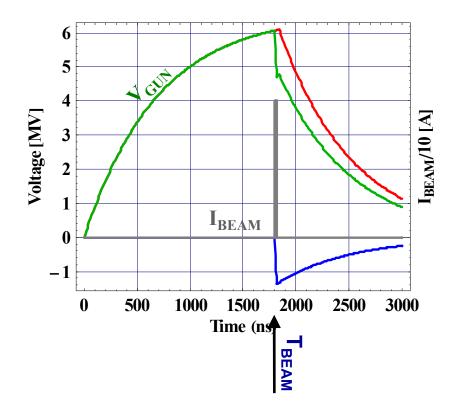
Transverse Emittance

In CTF II not much effort was put on transverse single bunch emittance, because chromatic effects dominated the bunch train emittance. An RF photo-injector for CTF3 could (and should) do much better !

Proposed changes relative to CTF II / Gun 4

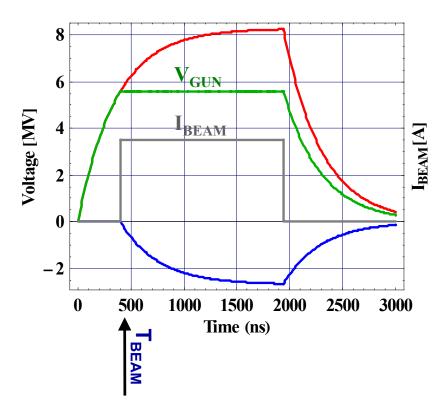
- Symmetric coupler to reduce time dependent deflecting fields
- Magnetic field in RF gun with bucking coil
- Emittance compensation in combination with downstream accelerating structures

Beam loading

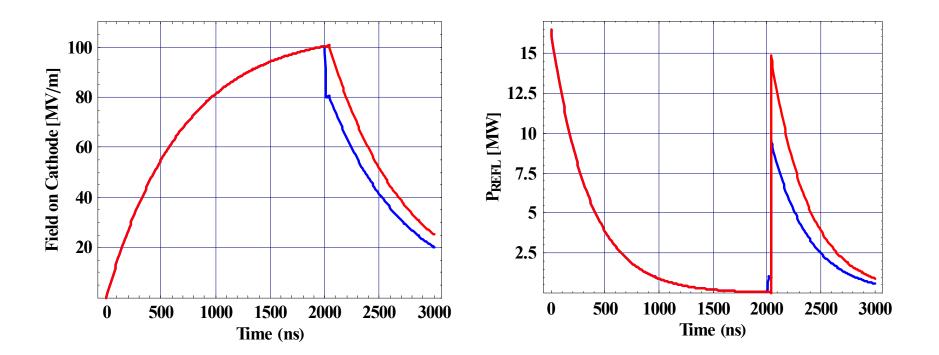

Design of CTF II / Gun 4 & 5 based on concept of large W_{STORED} to minimise beam loading. Beam loading is completely transient. RF coupling ≈ 1 .

Example Gun 4

 $I_{BEAM} = 40 \text{ A}$ $T_{BEAM} = 6 \text{ MeV}$ $T_{BUNCHTRAIN} = 16 \text{ ns}$ $E_{CATHODE} = 100 \text{ MV/m}$ $P_{RF} = 16.5 \text{ MW}$ $P_{BEAM} = 240 \text{ MW}$ $\Delta E/E_{BEAMLOADING} = 20 \%$

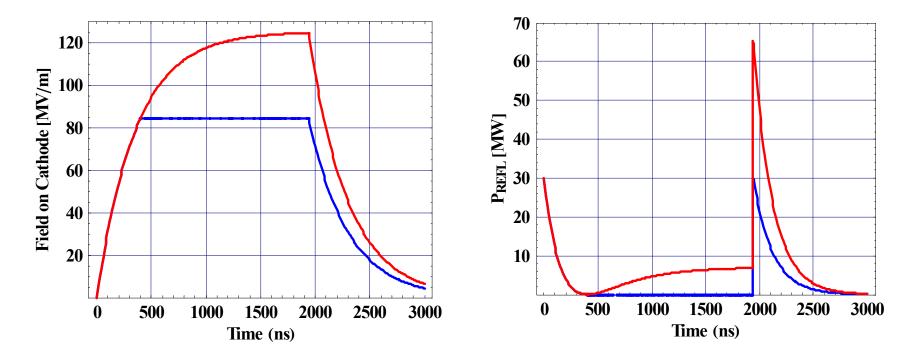

The lower beam current requirements of the CTF 3 injector allows operation in power equilibrium using parameters of Gun 4 geometry but RF coupling β =2.9 gives:

 I_{BEAM} = 3.5 A T_{BEAM} = 5.6 MeV $T_{BUNCHTRAIN}$ = 1540 ns $E_{CATHODE}$ =85 MV/m P_{RF} = 30 MW P_{BEAM} = 19.6 MW $\Delta E/E_{BEAMLOADING} \approx 0 \%$



Transient beam loading in CTF II RF-gun

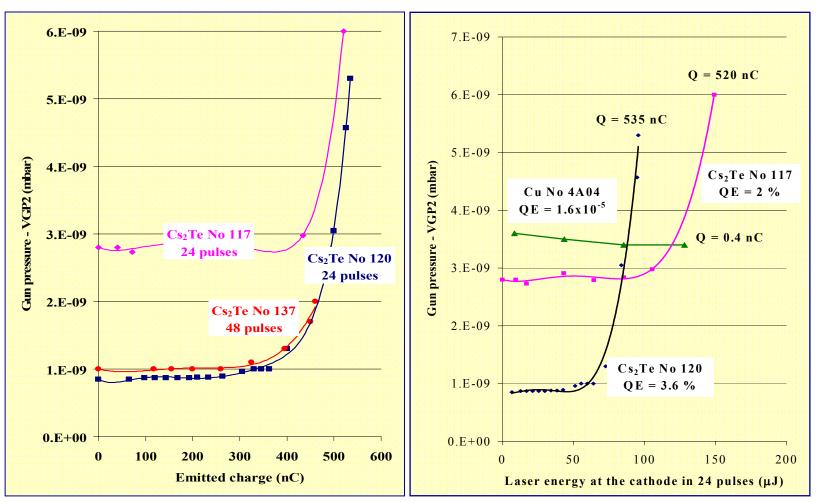
Steady state beam loading for CTF 3 RF-gun

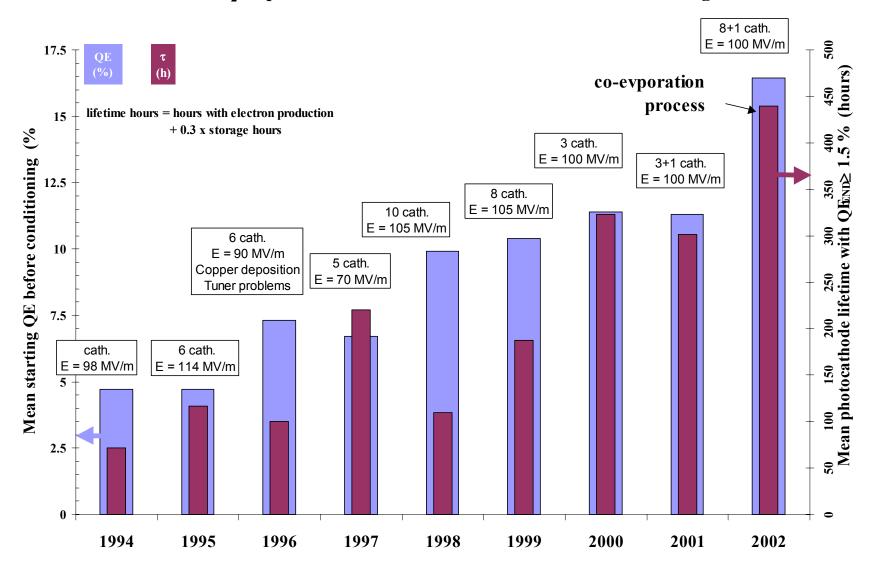


What happened to the gun if the laser didn't fire in CTF II?

Not much !

What happens to the gun if the laser pulse doesn't fire in CTF 3?


Cathode will be blown off, gun may get damaged, RF windows and circulators may get damaged !


Intra pulse RF interlock will be mandatory !

Dynamique pressure rise in CTF II/ Gun 4 as function of accelerated charge

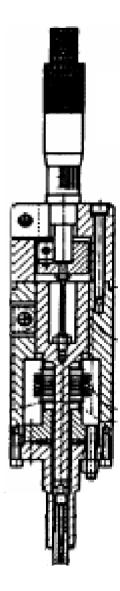
- Effect has been never fully understood !
- Potentially serious problem for CTF3 gun operation and cathode lifetime. 10 x pulse charge, 10 x rep. rate compared with CTF II !

⇒ Very good vacuum and pumping properties essential for CTF3 RF gun !

The 58 Cs₂Te photocathodes used in the CTF Drive Beam RF guns

Main results from dark current measurements (1)

Standard conditioning process:

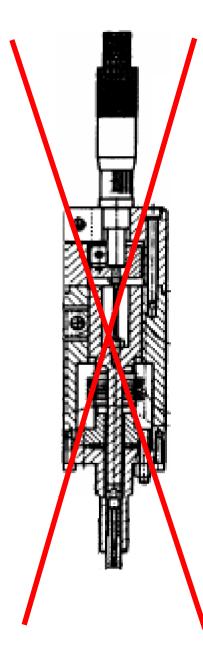

Slow increase of the klystron output power by minimizing break-downs, until 18MW nominal power, corresponding to 100 MV / m. After more than 10 minutes without breakdown, the cathode is considered as conditioned.

	Fresh Cs ₂ Te photo-cath.	Used Cs ₂ Te photo-cath	Chemically cleaned copper plug	ICE cleaned copper plug	ICE cleaned used Cs ₂ Te photo-cath.
φ (eV)	3.55	3.55	4.6	4.6	4.6
β From - to	73 - 66	77 - 53	104 - 70	94 - 49	102 - 100
Eq.Radius (nm)	35 - 55	27 - 165	38 - 269	55 - 2616	31 - 37
I _{mean} (mA) at 100MV/m	7.3 - 6.9	6.9 - 6.5	5.2 - 4.8	4.3 - 3.8	3.2

ICE : Argon ion bombardment at 5x10⁻² mbar eq. N₂

G. Suberlucq AB-ATB

CLIC Meeting 8/07/03


Tuning Pistons used on each cell of CTF II RF guns

Advantages:

- **\$** easy tuning after brazing
- 𝔅 easy to correct frequency error introduced by change of photo cathode (frequent operation, introduces typically Δυ≈± 150 kHz)

Disadvantages

- \Leftrightarrow introduces asymmetries in field distribution \Rightarrow emittance growth
- & difficult to get sufficient cooling of piston at high repetition rate (> 5Hz)
- incompatible with solenoid around gun
- **%** not good for vacuum
- **\$** expensive

Tuning Pistons used on each cell of CTF II RF guns

Advantages:

- **\$** easy tuning after brazing
- easy to correct frequency error introduced by change of photo cathode (frequent operation, introduces typically Δυ≈± 150 kHz)

Disadvantages

- \Leftrightarrow introduces asymmetries in field distribution \Rightarrow emittance growth
- **%** difficult to get sufficient cooling of piston at high repetition rate (> 5 Hz)
- incompatible with solenoid around gun
- **%** not good for vacuum
- sexpensive
- ⇒ Do tuning for CTF 3 RF gun with dimple tuning after brazing and water temperature for cathode plug compensation !

Possible strategy for CTF3 RF gun design

- Start from 3 cell geometry of CTF II / Gun 4
- add symmetric power coupler with coupling adapted for beamloading compensation
- add elliptical cell iris shape to reduce surface fields
- add solenoid and bucking coil around cavity
- add high pumping capacity directly at output of gun
- optimise cell lengths for minimum 3D emittance of nominal CTF3 beam
- optimise beam line layout for emittance compensation (incl. accelerating structures)
- don't forget suitable place for laser window
- omit piston tuners
- add dimple tuners and water temperature control
- omit all but one field measurement loop
- build
- tune
- install
- don't forget high power circulator