LAL Involvement in PHIN

- Principal objective design and construct RF gun suited to needs of CTF-3.
- 2nd objective install photo-injector test stand within the **NEPAL** laboratory at Orsay.

Strategy : Allow RF gun tests (at Orsay) to proceed in parallel with drive beam studies (at CERN).

c.f. TTF / NICAD

A Radio-frequency gun for CTF-3

Specifications (CERN/PS 2002-008)

RF Frequency	2.99855 GHz
Nominal power	30 MW
Beam energy	$5 \sim 6 \text{ MeV}$
Beam current	3.5 A
Q_0	13000
Repetition frequency	5 Hz
Coupling factor	~ 3
E _{cath}	85 MV/m

General considerations of importance (H. Braun, G. Geschonke, G. Suberlucq)

- symmetric coupling \rightarrow beam kicks,
- avoid tuning plungers \rightarrow complicate design,
- good dynamic vacuum pressure \rightarrow cathode life-time,
- design should be compatible with existing cathode installation scheme,
- need optical matching to downstream sections.

Take inspiration from previous gun designs (CTF-2).

The NEPAL Test Stand

(Nouvelles Expériences en Physique des Accélérateurs Linéaire)

• Originally built to test High Gradient S-band structures

35 MW, 4.5 μs pulsed modulator / klystron ensemble, (150 MW, 0.6 μs in pulse compression mode)

• Re-converted for tests of super-conducting cavities in pulsed mode (October 1996 – January 2000).

Test stand has essentially been in abeyance since then.

Power source promised 'on loan' to the Institute de Physique Nucléaire – Orsay for the **ALTO** project for use with the LEP Injector Linac structures.

LAL will inherit 'new' 20 MW klystron from the Super-ACO injector linac (to be closed at the end of 2003). Modulator more problematic (security issue). Build new modulator ?

Cannot test and condition CTF-3 gun to full power !

LAL experience in RF Gun Technology

- CANDELA 1-1/2 'de-coupled' cells. Metallic cathodes.
- ELYSE pulsed radiolysis facility. Gun based on CTF experience. Cs₂Te photo-cathodes.

Both guns 'single shot' as opposed to pulse train needed for CTF-3 !

Large beam power flow is most notable difference.

Principal tasks for the LAL group

- Design and construction of guns
- Installation of beam line
- Commissioning of commercial laser
- Construction of photo-cathode Preparation Chamber (ELYSE like)

CARE project funds available from January 2004. LAL project group to be organised during month of October.