



# Beam profile monitors



- Performances of already tested equipments
- Perspectives for the next run

CTF3 collaboration meeting 0903

T. Lefevre



### CTF3 beam & diagnostic requirements









### Screen and Camera





# Thermal analysis : Material study





| Material | c <sub>p</sub> | k    | T <sub>max</sub> |
|----------|----------------|------|------------------|
|          | J/gK           | W/mK | °C               |
| Be       | 1.825          | 190  | 1287             |
| С        | 0.7            | 140  | 3527             |
| Al       | 0.9            | 235  | 660              |
| Si       | 0.7            | 150  | 1414             |
| Ti       | 0.523          | 22   | 1668             |
| Мо       | 0.25           | 139  | 2623             |
| W        | 0.13           | 170  | 3422             |



Need thin foil of a material with a

- High fusion temperature
- High specific heat c<sub>p</sub>
- High thermal conductivity (for graphite  $\Delta T=12\%$  after 1ms)

Good candidates : Be (poison), Graphite





#### <u>Calculations for the injector</u> <u>profile monitor</u>

| I = 5.4A , E = 140keV , $\sigma$ = 1mm |               |     |               |     |
|----------------------------------------|---------------|-----|---------------|-----|
| $t_p$                                  | T (°C) @ 10Hz |     | Т (°С) @ 50Нz |     |
| (µs)                                   | С             | Al  | С             | Al  |
| 0.2                                    | 103           | 83  | 164           | 132 |
| 0.8                                    | 272           | 194 | 558           | 421 |
| 1.56                                   | 440           | 434 | 1003          | x   |

#### <u>Calculations for the linac</u> <u>profile monitors</u>

| I = 3.5A, E = 150MeV, $t_p$ =1.56µs |               |     |               |     |
|-------------------------------------|---------------|-----|---------------|-----|
| σ                                   | T (°C) @ 10Hz |     | T (°C) @ 50Hz |     |
| (mm)                                | С             | Al  | С             | Al  |
| 0.25                                | 1730          | x   | 2250          | x   |
| 0.5                                 | -             | x   | -             | x   |
| 0.6                                 | -             | 510 | -             | 650 |

• Carbon screens will stand the full beam intensity for the maximum repetition rate at every energy

• Other material like aluminum can only be used for a reduced bunch charge and a lower repetition rate



## Electron-photon conversion process



### **Optical Transition radiation**



• The number of OTR photons emitted by an electron in the wavelength range  $[\lambda_a, \lambda_b]$ 

$$N_{OTR} = \frac{2\alpha}{\pi} \left[ \left( \beta + \frac{1}{\beta} \right) \cdot \ln \left( \frac{1+\beta}{1-\beta} \right) - 2 \right] \ln \left( \frac{\lambda_b}{\lambda_a} \right)$$



| ĸ |
|---|
|   |
|   |

| Electrons energy (MeV)                | 0.14              | 20                        | 40                          | 150                       |
|---------------------------------------|-------------------|---------------------------|-----------------------------|---------------------------|
| [400,600]nm OTR photons per electron  | 7.2 10-4          | <b>7.3 10</b> -3          | <b>8.6</b> 10 <sup>-3</sup> | 1.1 10-2                  |
| [400,600]nm OTR photons on the camera | 4 10 <sup>8</sup> | <b>6</b> 10 <sup>10</sup> | 7 1010                      | <b>9</b> 10 <sup>10</sup> |





• The number of Black body photons emitted per second in the wavelength range  $[\lambda_a,\lambda_b]$  and in  $2\pi$  sr is given by:

$$N_{BB} = \int_{\lambda_a}^{\lambda_b} \frac{2\pi c}{\lambda^4} \frac{2\pi \sigma^2 \varepsilon}{\frac{hc}{e^{kT\lambda}} - 1} d\lambda$$

Black Body spectrum depends on the temperature.
 In our temperature range it is more intense in the red

 $\cdot$   $N_{\scriptscriptstyle BB}$  increases with the temperature



| Electrons energy (MeV) / Beam size (mm) | 0.14 / 1                               | 20 / 0.25                                 |
|-----------------------------------------|----------------------------------------|-------------------------------------------|
| Temperature (°C) : 50 Hz / 10 Hz        | 1003 / 440                             | 2250 / 1730                               |
| Number of BB photons on the camera      | 2 10 <sup>5</sup> / 4 10 <sup>-9</sup> | 4.5 10 <sup>9</sup> / 5.4 10 <sup>8</sup> |

 $\cdot$  The target temperature has decreased by 15% in 10ms so that N<sub>BB</sub> in the visible range has dropped by at least a factor 10

- Calculated in the range [400, 600]nm assuming a detection angle of 1.26msr and considering that BB emission lasts 10ms
  - $\cdot$  BB emission is only problematic at full beam charge and maximum repetition rate
  - Can be suppressed using optical filter
  - Need to be considered in the case of beam halo measurement







 $\bullet$  P47 Phosphor (Y2SiO5:Ce) deposit on a 10  $\mu m$  thick aluminum foil

- $\boldsymbol{\cdot}$  5µm thick with 1µm grain size
- Spectral response : [370, 480nm], Max at 450nm
- Decay time : 100ns (90-10%) , 2.9  $\mu s$  (10-1%)
- $\cdot$  400 ph/el in 2 $\pi$  and 0.1 ph/el on the camera



- Lot of light : 6.10<sup>10</sup> ph for 30nC
- High risk of damage
- Thin carbon foil (OTR)
- $\cdot$  5 $\mu$ m thick
- Spectral response : visible region [400-600nm]
- Temporal response : few fs
- 7 10<sup>-4</sup> ph/el (total), 3 10<sup>-6</sup> ph/el (camera), 7 10<sup>-7</sup>(proxitronic)



- + Few photons : 1.5  $10^8$  ph for  $8\mu C$
- Need light intensification but fast time response







Emitted light intensity is reduced by 77% after a total charge lower than 1C/cm<sup>2</sup> (20days, 15minutes per day, 5Hz and 100nC) (Expected value 5C/cm<sup>2</sup> for a 50% light intensity reduction)





### Observation of forward OTR from a graphite foil



• Backward OTR depends on the material reflectivity

• Provided the screen is very thin, the beam quality and beam size are not perturbed and the OTR light emitted in the forward direction is 5 times higher than the backward emission

Temporal evolution of the beam profile<br/>within the pulse duration[0-100]ns[100-200]ns[200-300]ns[0-100]ns[100-200]ns[0-100]ns

+ 1 A beam current : 100nC - 4 10 $^5$  photons over 100ns

• Images taken using a factor 500 light amplification (compared to a CCD camera)

Possible improvements using a better light collection system



### Spectrometer line profile monitor







<u>Calibration :</u> 200µm/pixel 5.5mm total

#### • OTR screen :

- $\bullet$  100  $\mu m$  thick aluminum foil
- Size : 10cm x 4cm
- 2.8 10<sup>-3</sup> ph/el (on camera)



'4.1 10<sup>8</sup>- 7.2 10<sup>10</sup> ph'

Observation for a beam with a minimum charge of 90nC (~ 1.2 10<sup>9</sup> photons)



hard camera



CCD camera

Minimum energy dispersion ~ 0.9% ( $\sigma$  = 3.6mm)

SEMgrid profiles ~ 1 A - 320 ns - 25.5 MeV



Problems for higher beam charge that need to be understood



## Linac profile monitor







• Calibration :  $150\mu$ m/pixel - 40mm total

#### • OTR screen :

- $\cdot$  100 $\mu$ m thick carbon foil (26% reflectivity)
- Size : Ø3cm
- $\cdot$  0.9 10<sup>-3</sup> ph/el (on camera) for 20MeV electrons

#### ' 1.1 10<sup>8</sup>-3 10<sup>10</sup> photons '

Possible improvements using an aluminum screen for the observation of lower beam charge





OTR carbon screen - 3.5 A 20 MeV Streak camera image - slow sweep speed



 Not enough light per bunch to allow a good bunch length measurement (Need 5 10<sup>6</sup> photons per bunch)

- Graphite screen : 26% less reflectivity than 'perfect' (mirror like) OTR screen
- Low light transmission (30%) between the screen and the camera:
   35m long optical line
  - at 20MeV OTR emission angle is still large (50mrad)

3.5 10<sup>5</sup> photons per bunch



- Better light collection for higher beam energy (gain a factor
  2 between 20 and 40MeV)
- Aluminum screen for the observation of reduced pulse length (at least gain x4 in light intensity)

• Alternative solution : Move closer the streak camera lab





- All the beam profile monitors have been tested during the commissioning
  Based on the obtained results, an optimization remains to be done. (modification of the radiation hard camera sensitivity)
  - OTR for non relativistic electrons is potentially very interesting and need to be studied carefully.
- For more critical points (like the SEMgrids) a rigorous experimental study is needed to understand and solve the observed problems.

- Things will be easier for higher energy electrons (up to 150MeV)
- Test of beam halo and OTR lobe monitoring on its way