THE 1.5 GHz RF DEFLECTOR FOR THE CTF3 DELAY LOOP

F. MARCELLINI

Even and odd trains are deflected by kicks of the same amplitude but opposite sign. Only even trains are injected into the ring.

DESI GN PARAMETER

Frequency [GHz]	$\mathbf{1 . 4 9 9 5}$
angle of deflection [mrad]	$\mathbf{1 5}$
Max. Beam energy [MeV]	$\mathbf{3 0 0}$
Klystron output Power [MW]	$\mathbf{2 0}$
Pulse length [$\mu \mathbf{s}$]	$\mathbf{5}$

The required deflection is too large to get with a traveling wave structure of reasonable dimensions. It is necessary to resort to a standing wave cavity.

CAVITY VOLTAGE vs. TIME

The major drawback of this choice is the slow voltage filling time of a resonant SW cavity.
To keep acceptable the difference (less than 1%) of deflection angle between the head and the tail of the train the cavity Q must be reduced, but not beyond a certain threshold, when the shunt impedance becomes too low.
A good compromise is obtained with a loaded Q value between 3000 and 3500 .

The cavity deflector has been designed starting from a simple pill box shape.
The cavity is externally coupled to a rectangular waveguide (WR650, the same standard of the klystron output) through a hole.
The hole dimensions set the input coupling coefficient β and they have been chosen to obtain the wanted cavity loaded Q.

Tuning sensitivity and range of tuning

$$
\begin{aligned}
\Phi=30 \mathrm{~mm} \Rightarrow & \frac{\partial f}{\partial I D}=562.9[\mathrm{kHz} / \mathrm{mm}] \\
\Phi=20 \mathrm{~mm} \Rightarrow & \frac{\partial f}{\partial I D}=257.6[\mathrm{kHz} / \mathrm{mm}] \\
\Phi=15 \mathrm{~mm} \Rightarrow & \frac{\partial f}{\partial I D}=152.4[\mathrm{kHz} / \mathrm{mm}] \\
& I D \max =19 \mathrm{~mm} \Rightarrow \Delta f=2.9 \mathrm{MHz}
\end{aligned}
$$

$I D=$ Insertion Depth $\quad \Phi=$ tuner diameter

CAVITY PARASITIC MODES

Resonant frequencies of the most dangerous parasitic modes for the beam dynamics (monopoles and dipoles) are far enough from the lines of the beam power spectrum.

The vertical polarization of the TM110 results more than 40 MHz apart from the horizontal one.

Example of HOM (octupole-2.98GHz).
Electric field (magnitude) representation.

TI ME DOMAI N CAVITY RESPONSE

The reflected power depends on:

- the cavity input coupling coefficient
- the pulse rise time

Reflected power for 2 arbitrary slopes of the input pulse
Blue - RF input pulse.
Red - cavity reflected power.

Power coming from klystron is split in equal parts by the hybrid and feeds two cavities, excited in the TM110 deflecting mode. Power reflected at the cavity inputs add in phase at the fourth port of the hybrid, where it is connected a load. In principle no power reaches the klystron.
With 2 cavities the total shunt impedance is doubled.
Deflecting voltage results increased by a factor $\sqrt{ } 2$.

WHOLE DEFLECTOR STRUCTURE DESI GN

Basic components: 1)Two identical cavities (the same described above). 2) One 3dB hybrid coupler.
The hybrid is longitudinally aligned at the center of the two cavities.

The fields in the two cavities resonates in quadrature.
Then the cavities have to be placed an odd multiple integer of $\lambda / 4$ of the RF wavelength apart along the beam line to kick the beam with the same amplitude and phase.
For reasons of space the distance between the gaps has been chosen 250 mm , i.e. $5 / 4 \lambda_{\text {RF }}$

THE WHOLE SYSTEM FREQUENCY RESPONSE

The peak in transmission between klystron and load ports is due to the power dissipated into the structure, while the not completely flatness of the reflection response is caused by some small residual mismatch. However the effect of these mismatches is below the threshold reported in the klystron data sheet.

Reflection at the klystron port (red). Transmission between klystron and load ports (green).

DEFLECTING FIELDS AND MAX ANGLE OF DEFLECTI ON

Deflecting component of electric (red trace) and magnetic (blue) field along the axis of the single cavity.

Deflecting voltage has been calculated integrating the transverse components of both the electric (Ehorizontal) and the magnetic (Bvertical) field on the axis of the two cavity structure.
The obtained shunt impedance is

$$
R=\frac{V^{2}}{2 P}=0.625[M \Omega]
$$

Operating at full power (20MW), the maximum angle obtainable is 17 mrad on a 300 MeV beam.

Mechanical drawings of the two cavities have been done. Cavities will be in copper OFHC, flanges in stainless steel. The manufacture has been proposed to the Andrzej Soltan Institute (Poland). We are waiting for their quotation.

Thanks a lot to Serge Mathot for his very helpful suggestions about brazing.
$4 \quad 4 \quad 1$

Distribution of losses on the cavity walls. Average power dissipated in each cavityis 2.5 kW at full power operation (i.e. 20 MW klystron output peak power).
In the drawings each cavity drawn results provided with 5 coils for cooling, even if thermal analysis has to be done yet.

NOTES

1) ALL MACHININSS MUST BE LONE AS SPECIFIED ay DOCUWENT N" CTF3-076-SP-A
2) ALL INTERNAL SURFACES TO HAVE ROUG-NESS

BETTER THAN O. 4 MICRON
3) ALL EXTERNAL SUFACES TO HAVE ROUGGNESS

BETTER THAN 32 MICDON
4) GENERAL TOLERANCES $= \pm 0.3 \mathrm{~mm}$

					NATOCNL INSTTTUTE OF NUCLEAR PHISICS FRASCATI NATICNAL LABORATORY		
	сти\%**		,				
	стaman		1				
rasi	vinimiona		2usi	1 *x			
	-				CTF3		
	coperrofne			*	delay Loop		
			2 cosic		DEFLECTOR		
					PLATE		
					A2	absuman	av
	a.pentsu	Emasain	neproval			CTF3-076-007	A
CNWFITR	cesioner				CTFJ-076-007	A	

\qquad

NOTES:
1] ALL MACVININSS MUST BE GONE AS SPECTFIED
By DOCUWENT N' CTF3-O76-SP-A
2) ALL INTERNAL SURFACES TO HAVE ROUG-NESS BETTER THAN OA MICRON
3) ALL EXTERNAL SUFACES TO HMVE ROUGHESS BETTER THAN 32 MICRON
4) GENERAL TOLERANCES $n \pm 0.3 \mathrm{~mm}$

The RF windows (and the load) have been already ordered from Thales Electron Devices.
They are basically the same window that is mounted on the klystron output. The wave reflected at the cavity input gives rise to a partly standing wave configuration in the deflector wg coupler.
It is safer for the ceramic if the window is placed in a position where the E field has a minimum.
The length of the wg coupler has been designed to satisfy this condition.

The 3 dB hybrid, all the wgs and the bends needed from the klystron output to the deflector and 4 directional couplers for diagnostics, have been already ordered from Mega Industries.

WR650 CPLR DUAL DIRECTIONAL REFLECTOMETER
MEGA CAT. NO.: 3719200
COUPLING: 60dB
LENGTH: 12 INCHES
FLANGES: 650CPRG 2.
$\mathrm{N}^{\circ} 4$
WR650 $90^{\circ} \mathrm{H}$-PLANE MITER
ELBOW
MEGA CAT. NO.: 3707001
LEG LENGTH: 6×6 INCHES FLANGES: 650CPRF
3.
$\mathrm{N}^{\circ} 1$
WR650 E-PLANE 3dB HYBRID AMPLITUDE BALANCE: $\pm 0.25 \mathrm{~dB}$ PHASE BALANCE: $90^{\circ} \pm 2^{\circ}$ ISOLATIOIN: 28 dB MINIMUM VSWR: 1.10:1 MAXIMUM FLANGES: 650CPRG

7.
$\mathrm{N}^{\circ} 6$
WR650 90° E-PLANE MITER
ELBOW
MEGA CAT. NO.: 3706001 LEG LENGTH: 6×6 INCHES FLANGES: 650CPRF
5.

N ${ }^{\circ} 1$
WR650 STRAIGHT WG ASSY. RIBBED
MEGA CAT. NO.: 370300X
LENGTH: 2150 mm
FLANGES: 650CPRG
6.
$\mathrm{N}^{\circ} 1$
WR650 STRAIGHT WG ASSY.
RIBBED
MEGA CAT. NO.: 370300X
LENGTH: 2212 mm
FLANGES: 650CPRG

N ${ }^{\circ} 1$
WR650 $90^{\circ} \mathrm{H}$-PLANE MITER
ELBOW
MEGA CAT. NO.: 3707001
LEG LENGTH: 6×6 INCHES
FLANGES: 650CPRG
8.
$\mathrm{N}^{\circ} 2$
WR650 STRAIGHT WG ASSY.
RIBBED
MEGA CAT. NO.: 370300X
LENGTH: 2400 mm
FLANGES: 650CPRF (ONE SIDE) /
650CPRG (OTHER SIDE)
9.
$\mathrm{N}^{\circ} 1$
WR650 STRAIGHT WG ASSY.
RIBBED
MEGA CAT. NO.: 370300X
LENGTH: 200 mm
FLANGES: 650CPRG

