Photo-injector, General Plan & Photocathodes

1. The CTF3 photo-injector

2. Status of the project

- ♦ Laser (see M. Divall's presentation)
- ♦ RF gun (see R. Roux's presentation)
- \clubsuit Photocathodes
- Installation

Photocathode studies

schedule

CTF3 Photo-injector specifications

Pulse train duration (1	1.548	μs	
Pulse train charge (1)	5434	nC	
Average current in the	3.51	А	
Number of bunches in	212		
Odd/even sub-pulse v	140.735	ns	
Number of bunches in	2332		
Charge / bunch	2.33	nC	
Distance between bur	0.667	ns	
Bunch width (FWHH)	10	ps	
ϵ_{T} normalized (rms)	\leq	25	π .mm.mrad
∆p/p (rms)	\leq	2	%
charge stability	\leq	0.25	%
Repetition rate		1 - 50	Hz
Mean current	@ 50 Hz	271.68	mA

(1) With starting bunches

(2) The photo-injector must be able to produce only one electron pulse

The CTF3 Photo-injector synoptic

G. Suberlucq AB-ATB

CTF3 Collaboration meeting 23-25/11 / 2004

Laser: Oscillator & preamplifier

- **1.5** GHz, 10 ps pulse width, temporal jitter < 1 ps rms + 10 W CW preamplifier
- Setup Estimated coast : 200 kCHF + 100 kCHF

Firms invited to tender

Supplier name	Origin	Contacted On	Town	Country	Response
HIGHQLASER PRODUCTION GMBH	I1	10/06/2004	HOHENEMS	AT	INTEREST
TBWP (TIME-BANDWIDTH PRODUCTS)	I1	10/06/2004	ZURICH	СН	INTEREST
ALPHALAS GMBH	I1	10/06/2004	GOETTINGEN	DE	NOREPLY
JENOPTIK GMBH	I1	10/06/2004	JENA	DE	NOREPLY
LUMERA LASER GMBH	I1	10/06/2004	KAISERSLAUTRN	DE	NOREPLY
MAX-BORN-INSTITUTE (MBI)	I1	10/06/2004	BERLIN	DE	NOREPLY
SPECTRA-PHYSICS GMBH	I1	10/06/2004	DARMSTADT	DE	NOREPLY
COHERENT SCIENTIFIQUE	I1	10/06/2004	ORSAY CEDEX	FR	NOREPLY
ADVANCED OPTICAL TECHNOLOGY LTD	X1	16/06/2004	BASILDON ESSEX	GB	NOREPLY
LASER LINES (INDUSTRIAL & MEDICAL) LTD	I1	10/06/2004	OXON	GB	NOREPLY
UNIVERSITY OF STRATHCLYDE	I1	10/06/2004	GLASGOW	GB	DECLINED

High Q Laser production: oscillator + preamplifier in a same enclosure ~ 269 kCHF , delivery is foreseen end of February

G. Suberlucq AB-ATB

CTF3 Collaboration meeting 23-25/11 / 2004

Laser: Pumping diodes

First amplifier

- 18 kW total peak power at 2.5 % duty cycle, 50 Hz rep. rate Using a 7 cm long, 0.7 cm diameter Nd:YLF rod
- **Estimated coast: 180 kCHF ; expected delivery: April May 2005**

Supplier name	Origin	Contacted On	Town	Country	Response
DILAS DIODENLASER Gmbh	I1	17/11/2004	MAINZ	DE	
JENOPTIK Gmbh	I1	17/11/2004	JENA	DE	
LASER ENGINEERING APPLICATION S.A.	I1	17/11/2004	ANGLEUR	BE	
ROITHNER LASERTECHNIK	I1	17/11/2004	VIENNA	AT	
THALES LASER DIODES	I1	17/11/2004	ORSAY	FR	

Firms invited to tender (price enquiry DO-21929/AB)

Phase coding and pulse shaping (1)

G. Suberlucq AB-ATB

CTF3 Collaboration meeting 23-25/11/2004

Phase coding and pulse shaping (2)

- **KF for laser mode-locking : 3 dBm @ 1.49928 GHz**
- **5** 3 programmable timing pulses with a ps jitter
- **4** programmable standard timing pulses
- ✤ Fast Pockels cell drivers with rise and fall time < 500 ps (10%-90 %)</p>
- Section Pattern generator with jitter < 10 ps rms</p>

RF gun

RF frequency (GHZ) 2.99855

- RF power (MW) 30
- Acc. electric field (MV/m) 85
 - Beam energy (MeV) 5.6
 - Beam current (A) 3.5 5
 - Charge/bunch (nC) 2.33
 - Bunch length (ps) 10
 - Energy spread (%) < 2
- Normalized emittance (π .mm.mrad) < 25
 - Number of pulses ~ 2332
 - Pulse train duration (µs) 1.548
 - Coupling factor (β) 2.9
 - Vacuum pressure (mbar) 2.10⁻¹⁰
 - **Repetition rate (Hz)** 50

CTF3 Collaboration meeting 23-25/11 / 2004

Photocathodes for the CTF3 photo-injector

Photocathodes with a QE \geq 3 % during at least 40 working hours

A photocathode production to guarantee a continuous run of at least 6 months

- Solution States The rejuvenation of the preparation chamber is completed
- A new port has been added to allow cathode transfer for analysis without breaking the vacuum (AUGER and XPS analysis)
- Design of a small transport chamber between preparation chamber and XPS analysis bench compatible with the CEA- SP2A's chamber
- A new mass spectrometer with mass up to 200 has been installed
- A new bake-out installation, clean-room compatible, was designed and ordered. Installation expected for the end of November.

Photocathode production by co-evaporation

Preparation chamber ready to start studies of:

- **New evaporators**
- **&** Evaporation of alkali-antimonides

Photo-Injector installation

- ✤ 2004 end of 2006
 - Photo-injector in the former CTF2
 - Laser-room in the former CTF2 laser-room
 Position stability not guaranty

§ From 2007

- Photo-injector in the place of the CTF3 thermionic gun
- Laser-room in the first part of the CTF2

CTF3 Collaboration meeting 23-25/11 / 2004

Study supported by E.U. inside CARE - JRA - PHIN Informal collaboration with CEA-DPTA-SP2A

Secondary Emission Enhanced photo-emitter

Proposal from I. Ben-Zvi et al. C-A/AP#149, April 2004, BNL

- Cathode insert consist of :
- Alkali antimonide cathode
- A sealed diamond window (~10 μm thick)
- UHV in between

Expected avantages

- Very high equivalent QE ~ 1000 % !
- ♦ Low laser power
- Low thermal emittance (NEA surface)
- No mutual contamination between the gun and the photocathode
- Possible high mean current
- No load-lock system
- The diamond window is transparent to photons and electrons
- Electrons are produced by a laser beam shooting an alkaline cathode
- Electrons are multiplied by secondary emission by the diamond window

Schedule

Realization of the photo-injector option in two steps :

Solution Photo-injector commissioning in the CTF2: summer 2006

Operational photo-injector in the CTF3 in 2007

- > Installation during the shut-down 2006-2007
- Commissioning from summer 2007

CTF3 Collaboration meeting 23-25/11 / 2004