

Laser status CTF3 Collaboration meeting CERN 23-25 November 2004

Marta Divall, Graeme Hirst, Emma Springate, Ian Ross, Guy Suberlucq, Roberto Losito

M.Divall

The outline of the talk

Reminder to the PILOT test results, Pilot to CTF3

- •Milestones and deliverables
- Development programme
- Stability
- Steady-state operation
- •Oscillator, preamplifier
- Thermal management
- •Amplifier design (gain calculations)
- •High power pumping diodes
- Amplifier head design
- Active feedback stabilisation
- Summary

M.Divall

PILOT TEST System layout

PILOT to CTF3 Target parameters

Target Parameters	Units	PILOT (achieved)	CTF3
Charge / bunch	nC	0.07	2.33
Number of pulses	-	250	2332
Oscillator repetition	GHz	0.25	1.5
frequency			
Macro-pulse width	μS	1	1.548
QE _{min}	%	4	3
Wavelength	nm	262	
E _{cathode} / pulse	nJ	8.75	370
Optical path transm.	%	52	70
IR/UV conversion eff.	%	1.5	7.4
Stabilization transm.	%		70
Repetition rate	Hz	5	5 (1-50)
E _{OUT} / pulse (Amplifier)	μJ	1.12	10
Pulse train mean power	kW	0.28	15
Average power (UV)	mW	1.4	116
E _{OUT} / pulse (oscillator)	nJ	0.4	6.7
			M.Divall

Milestones and deliverables

Milestones

•Increase the power of existing oscillators (CCLRC-RAL, CNRS-LOA).

•Optimise the design of the amplifiers for required power output at minimum cost and complexity (CCLRC-RAL, CERN, CNRS-LOA).

•Efficiently convert the laser output wavelength to UV using new harmonic generator crystals (CCLRC-RAL, CERN, CNRS-LOA).

•Establish ultra-high stability including the use of charge and pointing stability feedbacks (CCLRC-RAL, CERN, INFN-LNF).

Deliverables:
High power oscillator.
Specific amplifiers.
Specific frequency conversion stages.
Test of feedback systems.

M.Divall

Development programme

Photo-cathode performance

Oscillator

high cw power ~30W 1.5GHz mode-locked

•Amplifier

stable output pulse train high efficiency (1µm IR laser) good beam quality (lensingeffect)

•Feedback-control (<0.1%rms)

laser diode pump current (µs) fast optical gate (Pockels-cell) accurate monitor (0.1%)

•Fourth harmonic generation

high efficiency thermal management

Optics

good beam quality compensation for thermal lensing high damage thresholds

Diagnostics

stable operation high resolution for stability measurements

1-50Hz qcw signal detection

CTF3 amplifiers Stability

Diode pumping
Steady-state operation
Feedback-system (Pockels cell, pumping current)
Saturated amplifiers
Saturated harmonic generation stages

•Temperature of the coolant (wavelength shift of diodes)

- Pump current stability
- •Oscillator stability
- •Ringing in the Pockels cell(s)
- •Thermal effect in the harmonic generation stages

Pulse structure

1.5 GHz cw pulse train

CTF3 amplifiers Steady-state operation

$$P_{out} - P_{in} = \eta_p P_{abs} - \frac{\pi D^2}{4} F_{sat} \ln G \frac{(1+B)}{\tau_{fl}}$$

Fast feedback stabilisation is needed!!

CLRC Oscillator and preamplifier

Parameter	unit	Specified in tender	HighQ
Laser gain medium		Nd:YLF	
Wavelength	nm	1047	
Type of operation		cw mode-locked	
Repetition rate	MHz	1499.28	
Average output power	W	> 0.2	>0.2 3W, 10W with preamplifiers
Pulse width (FWHM)	ps	< 10	
Timing jitter from an external 1.5 GHz RF source	ps	<±1	<±1 (typ.)
Polarization		Linearly polarized (1:500)	
Beam quality M ²		TEM ₀₀ M ² < 1.2	M ² < 1.2
Beam pointing stability	μrad/°C	±25	±25
Beam size stability		5% rms size jitter	
Amplitude stability after a 1 h warm-up		< 0.2 % rms above the 100 kHz noise region <1% rms below the 100kHz noise region	
Warranty	year	1	1year/5000h of operation whichever is first
Repair and maintenance		Available for at least 5 years	

Tender has been sent out 28th of September 2004 Delivery will be February of 2005 The acceptance test will take place in CERN The support will be valid in RAL after shipping The company will provide an all optical timing jitter measurement

CTF3 amplifiers

High average power, thermal management

•Thermal lensing •Fracture limit of YLF for rod geometry 22 W/cm

With **37 kW** peak pumping power the thermal load **~21 W/cm** assuming homogeneous pumping along the length of the rod.

Fracture limit measurements for etched rods Redesign the system with less power in the final amplifier

Possible collaboration with Vienna University of Technology

- Development of etching technology for strengthening of LiYF4 laser crystals
- Development of ion exchange technology for strengthening of LiYF4 laser crystals
- Combination of etching and ion exchange techniques for strengthening of LiYF4 laser crystals

M.Divall

CTF3 New system layout

Calculated gain curves

CCLRC Consequences of the new design

Advantages

- Less power in the second amplifier; safer thermal conditions
- 50 Hz operation is possible
- Higher overall efficiency
- Smaller gain and higher saturation in the second amplifier

• Similar power level in the amplifiers allows easier thermal lens compensation (The two crystals can be rotated by 90° to each other)

Disadvantages

- Two completely new amplifier
- Higher cost

New specification for the diodes

Pumping diodes

1st amplifier

15 kW peak power 400 $\mu s~$ 50Hz pumping

2nd amplifier

20 kW peak power 200 $\mu s~$ 50Hz pumping

Asking for

•18 kW peak power for long lifetime 10⁹ shots
•2.5% duty cycle for flexibility in pumping time
•Homogeneous pumping along the length of the 7 cm rod

5 fold geometrical configuration

Asking for

•22 kW peak power for long lifetime 10⁹ shots
•2% duty cycle for flexibility in pumping time
•Homogeneous pumping along the length of the 11 cm rod
•5 fold geometrical configuration

Specification needs to be put down for diodes Homogeneous pumping has to be investigated Surveying on the market has to be carried out

5kW 7.5 cm Vertical stack Need bigger spacing between arrays

Vertical stack	Horizontal stack
Mixed polarization \perp and \parallel to c-axis	Only perpendicular Polarization to c-axis
Some parallel to c-axis \rightarrow higher absorption efficiency	More sensitive to Wavelength and so temperature
Too high power/length →several stacks needed or bigger spacing	More flexible in power/length
The divergence angle is ideal for 1 cm diameter rod	Special microlens arrangement needed for 6-8° divergence
Complicated to calculate pumping distribution	Easy to calculate M.Divall
	CLF

Pumping distribution Measurements vs. calculations

792nm perpendicular to c-axis (arrays along the optical axis) 0.5cm diameter rod

MathCad calculations

M.Divall

Pumping diodes

•Lensed option is too expensive, and no guarantee for good performance

•To buy more arrays to fill the length of the rod is cheaper, than a custom bar spacing

•The estimated cost for the two amplifiers together

max. 400.000 Euro

The design calls for uniform pumping along the effective 7 cm of the rod, using either a single long stack or 2-3 shorter stacks. External lenses will assure efficient coupling of the pump into the rod.

The head design

- •Simple water and electrical connections
- •More accurate positioning of the focusing optics
- Easy assembly
- •Possibility of rotating the rod in situ
- •Alike design for the two amplifiers

• Utilizing the energy stored in the laser rods during the total pump-up phase in more efficient way would probably allow to reduce the required amount of diodes and therefore the total costs of the laser system. It would also solve the problems with fracture limit of the laser rods. This option should be taken into account because it is of large interest for other institutions.

With burst mode less pumping time is needed. However to get the energy per pulse out from the system (peak power) the same pumping power needed. The required duty cycle for the diodes is standard, and the lifetime will depend on the number of shots, and not on the energy/pulses. So cost-wise the qcw solution for the seed does not make a difference. However it would help with thermal management, but in the new design this problem is solved, and with thermal power/unit length being the same in both amplifiers the thermal lensing can be easily compensated. With steady-state operation in the case is slow input variations the output will remain the same, while in the case of burst mode operation this can cause very high overshoot (gain) at the front of the train. For safe operation the system requires sophisticated feedback stabilization and timing control.

• It may worthwhile to consider an oscillator running in burst-mode instead of CW mode.

This type is laser is not common on the market. Stable operation is guaranteed in a cw mode-locked laser.

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 34, NO. 10, OCTOBER 1998 Feedback-Stabilized Nd:YLF Amplifier System for Generation of Picosecond Pulse Trains of an Exactly Rectangular Envelope Ingo Will, Armin Liero, Dieter Mertins, and Wolfgang Sandner

M.Divall

Summary

