

Introduction

 Following the 19/05/04 meeting at CERN about the "CTF3 accelerated programme", a possible french contribution has been envisaged to the 200 MeV Probe Beam Linac

- Two machine options were suggested, plus
- A third one that appeared in the discussion
- So, main probe beam design options :

Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching

Probe beam characteristics

Beam parameters

Linac parameters

Charge	nC		0.6
Energy	Me\	/	~190
Energy spread (total)	%		< 4
Bunch length (rms)	ps		0.75
Norm. emittance	π m	m.mrad	< 20
Bunch frequency	GHz	7	1.5
# accelerating sections			2
Section length		m	4.5
Section type (LIL)			ТW
Focusing solenoids		Т	<0.4
RF frequency		GHz	3.
Gradient		MV/m	20

M. Jablonka CTF3 Collaboration meeting, 23-25/11/2004

"Thermoionic gun" option

M. Jablonka CTF3 Collaboration meeting, 23-25/11/2004

Probe beam

design options

"RF photo gun" option

Probe beam

design options

An *additional klystron* is required for the gun because pulsed phase control is different for gun and sections

Thermoionic vs RF photo gun

	Thermoionic gun	RF photo gun
Advantages	Well established technique	 Better emittance More attractive technique More flexibility Synergy with neighbour labs (LAL, ELYSE, ELSA)
Disadvantages	 High frequency (1.5 GHz) grid control difficult Bunch sequence control difficult (1 to 32 bunches) Knowhow has gone away from our Lab 	 High power klystron+modulator required Specific expertise required (laser, photocathode)

Velocity bunching

- Classical method with low energy thermoionic guns (see Septier-Lapostolle) but...
- New concept (Serafini, Ferrario) with RF guns and emittance compensation
- Saves a chicane, then no CSR and less space charge effect
- RF bunching section does not accelerate much
- Will be experimented on SPARC (Frascati)

"SPARC" project (INFN Frascati)

- R&D project to investigate high brightness e- beam production
- Will study both velocity and magnetic bunching schemes

34 m

Frequ	ency: 2856 MHz		Normal Conduc	cting	
GUN PARAMETERS		LINAC PARAMETERS			
Peak Field	l: 120-140 MV/m	(15 MW)	Accelerating Field:	25-30 MV/m	(50 MW)
Solenoid I	Field: 0.3 Tesla		Solenoid Field:	0.1 Tesla	
Charge:	1 nC		Beam Energy:	150 MeV	
Laser:	10-12 ps x 1 mm	(Flat Top)			

Results of a preliminary HOMDYN study (1)

Many thanks to Massimo Ferrario (INFN Frascati) !

HOMDYN assumes a *square* initial distribution; **PARMELA** (or **ASTRA**) simulations with *gaussian* distribution are required. This will roughly <u>double</u> the emittance (M. Ferrario)

Output parameters

M. Jablonka CTF3 Collaboration meeting, 23-25/11/2004

Results of a preliminary HOMDYN study (2)

M. Jablonka CTF3 Collaboration meeting, 23-25/11/2004

Probe beam

design options

Results of a preliminary HOMDYN study (3)

Evolution of bunch length

sigma_z_[mm]

Probe beam

design options

M. Jablonka CTF3 Collaboration meeting, 23-25/11/2004

Results of a preliminary HOMDYN study (4)

Probe beam design options

Gun

RF	compressor
----	------------

Peak field	120	MV/m
Phase (90 is the crest)	27	Deg
Charge	0.6	nC
Laser spot Radius	1	mm
Laser pulse Length (Flat Top)	8	ps
Solenoid field	0.26	Т
Thermal emittance (rms)	0.6	mm-mrad

# Accelerating Sections	1	
Section length	4.5	m
Distance from the cathode	1.5	m
Accelerating field	20	MV/m
Phase (0 is the crest)	-92	o
Solenoid field	0.05	Т

Linac

# Accelerating Sections	2	
Distance from the cathode	6.5 11.5	m
Accelerating field	20	MV/m
Phase (0 is the crest)	15	ο

Magnetic vs RF bunch compression

	Magnetic compressor	Velocity bunching
Advantages	 Better known results 	 Better emittance Simpler layout Simpler operation
Disadvantages	 Requires magnets, quads, diagnostics, special vacuum chamber CSR effect Space charge effects 	 Requires one more section Takes more space (?) RF power distribution more complex

Questions in conclusion

- Is an additional LIL section available ?
- Can one **45 MW klystron + "BOC"** power 3 LIL sections instead of 2 and provide the same 20 MV/m gradient ?
- If not, can as good beam results be obtained with a lower gradient ?
- Is there enough space for 3 sections ?
- If all answers are YES, our preferred solution would be
 - RF photo gun
 - +
 - Velocity bunching

Thanks to CLIC colleagues and again to Massimo Ferrario