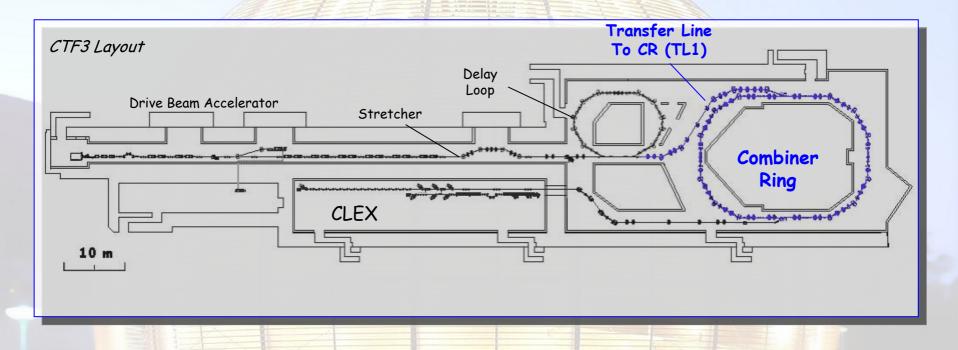
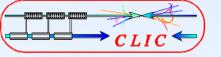


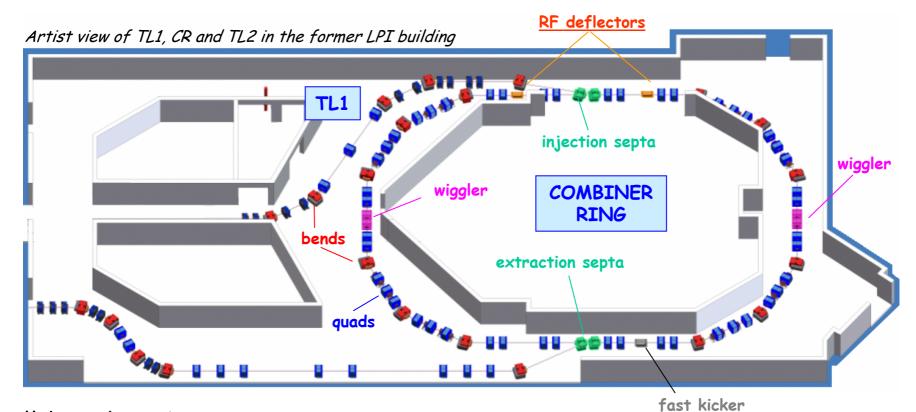
CTF3 Collaboration Meeting


CTF3 COMBINER RING & TL1 - AN OVERVIEW

R. Corsini

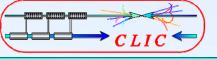


The Combiner Ring (CR) and the transfer line TL1



- TL1 transports the drive beam from the Delay Loop to the CR, preserving its time structure.
- The CR is used to increase the drive beam peak current from 7 A to 35 A and to obtain the required bunch spacing (bunch combination process with RF deflectors).

Components & design considerations

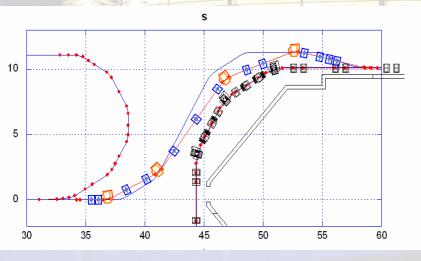


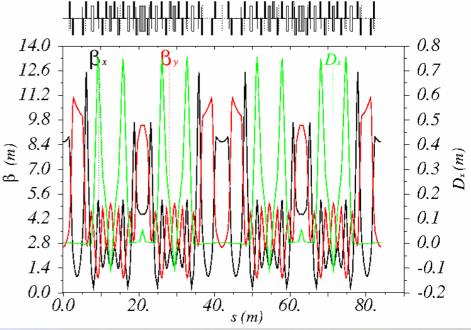
Main requirements:

preservation and control of beam time structure, bunch length and energy spread, transverse beam stability.

- The total length is about 124 m (40 m + 84 m)
- The nominal beam momentum is 150 MeV/c. The hardware must be compatible with a maximum beam momentum of 300 MeV/c.
- The maximum pulse repetition rate is 50 Hz.

R. Corsini, 19 May 2004

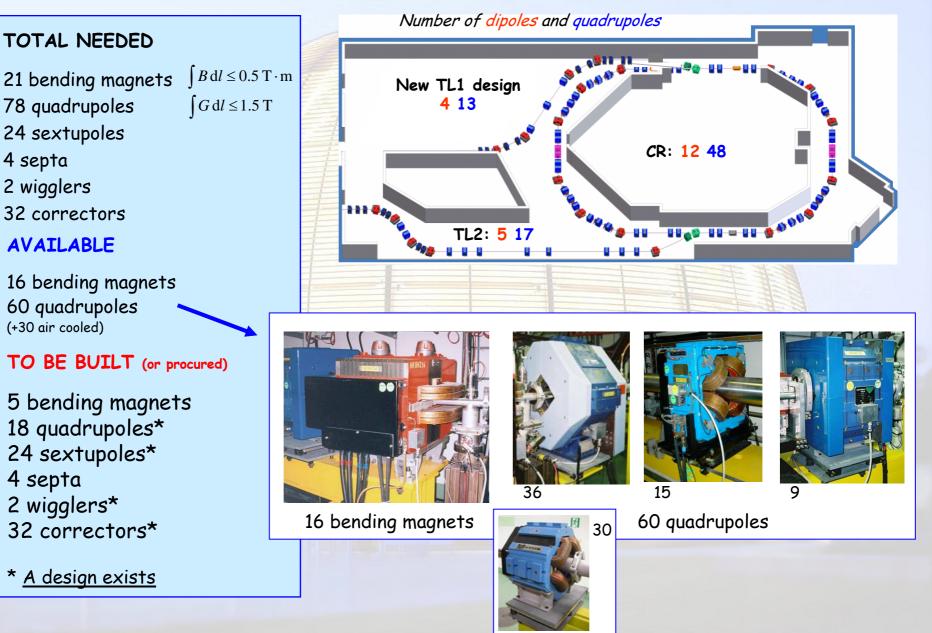


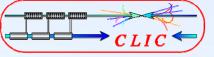

A reference optics layout exists from INFN-LNF

- The CR optics can be considered as final. To be checked depending on the final choice of quadrupoles.
- There is a new design of TL1. It satisfies the basic beam dynamics requirements. Some further modifications could be needed depending on exact layout. Second order corrections (sextupoles) to be included.

Requirements:

 Both TL1 and CR must be achromatic and isochronous.




(C. Biscari, INFN-LNF)

Magnets (including TL2 up to CLEX) Presentation this afternoon: T. Zickler

CLIC

- Bending magnets: all bends for TL1 and CR (16) are available (EPA combined function dipoles)
- Quadrupoles:

Need > 18, including TL2 32 quadrupoles can be obtained from LURE (Super-ACO dismantling) 11 new "narrow" quadrupoles, adapted to CR injection, ordered from BINP

ID	Туре	Lmagn [m]	Coeff [T/m A]	Resist [Ω]	I (1T) [A]	P (1T) kW	Need	Available	Spares	
S-ACO	QX	0.4	0.017777	0.05432	141	1.1	28	32	4	
EPA large	QE	0.38	0.03095	0.4	85	2.9	2	9	7	
QN	QF	0.328	0.016	0.045	191	1.6	13	15	2	
new	QG	0.3	0.04	0.075	83	0.5	10	11	1	
terwilliger	QH	0.38	0.03595	0.25	73	1.3	21	36	15	
EPA norm	QI	0.3585	0.02817	0.08	99	0.8	4	30	26	
							78	133	55	29

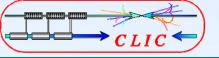
Sextupoles:

All sextupoles ordered from BINP. If additional sextupoles for TL1 (and TL2) would be needed, 12 old EPA sextupoles are available

• Wigglers:

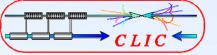
Septa:

- One ordered (INFN-LNF), second from LNF later ?
- Correctors: Under way from CIEMAT
 - To be engineered and built by CIEMAT (waiting for approval)



- Quadrupoles in TL1 and TL2 powered independently for maximum flexibility.
- Large number of quad families in CR, for flexibility and low power converters.
- Several power supplies are available from LPI (for instance, CR bends)

General type	N	used for	I _{MAX}	V _{MAX}	P _{MAX}
Small	64	Correctors	10 A	4 V	0.04 kW
Medium	60	Quads, sexts, wigglers, bends	300 A	70 V	6 kW
Special	2 1 2	Septa Bends CR Bends TL	1500 A ? 320 A 340 A ?	20 V 140 V 60 V	30 kW 45 kW 20 kW


Power supplies (cont'd)

	magnets	N supplies	I [A]	∆V [V]			
<u>TL1</u>	dipoles	2	275,340	20,24			
	quads	13	*	*			
CR	dipoles	1	320	140			
	wigglers	2x2	240,310	11.5,12.4			
	quads	20	*	*			
	sext septa	3 2	150 1500 ?	20.5 20 ?			
<u>TL2</u>	dipoles	1?	340 ?	60 ?			
	quads	17	*	*			

Plus a total of 64 small power supplies for correctors (10 A. 4V)

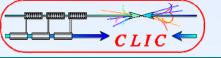
* See next slide for detailed values

Quadrupoles powering scheme

preliminary

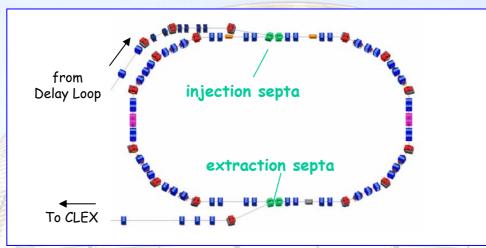
Туре

QX QE

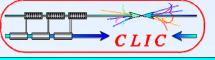

QF QG

QH

QI



Name	Glmax	N_supplies	N_mag/s	N_mag-tot	Туре	Lmagn [m]	Coeff [T/m A]	Resist [Ω]	Curr [A]	DeltaV [V]	Power [kW]	ID	
KQTLF4	1.3	3 1	1	1	QG	0.3	0.04	0.075	108	8.1	0.9	S-AC	\sim
KQTLF3	1.6	5 1	1	1	QF	0.328	0.016	0.045	305	13.7	4.2		
KQTLF2	1.6	5 1	1	1	QF	0.328	0.016	0.045	286	12.9	3.7	EPA	۱a
KQTLF1	0.7	7 1	1	1	QF	0.328	0.016	0.045	133	6.0	0.8	QN	_
Kqis9		1 1	1	1	QF	0.328	0.016	0.045	191	8.6	1.6	and a second	
	0.2				QI	0.328	0.018	0.045	20			new	
Kqis8		<u> </u>			QF	0.3565	0.02017		191			terwi	illi
Kqis7		1 1			QH	0.320	0.016	0.045	73		1.0		
Kqis6	0.8				QH	0.38			59			EPA	1 II
Kqis5	1.2				QH	0.38	0.03595		88		1.9		
Kqis4													
Kqis3	0.6	5 1	1	1	QH	0.38	0.03595	0.25	44	11.0	0.5		
KQDL6	0.9) 1	1	1	QH	0.38	0.03595	0.25	66	16.5	1.1		Y
KQDL5	0.3				QI	0.3585	0.02817		30				3
	0.0							2.50	50				
							_					1	
KQ01	1.4				QX	0.4	0.017777	0.05432	197		4.2	1	
KQ02		1 2			QX	0.4	0.017777	0.05432	141		4.3	1	
KQ03	0.9	9 2	4	8	QX	0.4	0.017777	0.05432	127	27.5	3.5		
KOL 1N		2 1	2	4	00	0.3	0.04	0.075	108	16.3	1.8		
KQL1IN	1.3				QG QG			0.075					
KQL2IN						0.3	0.04	0.075	58				
KQL3IN KQL4IN	0.6				QF QF	0.328	0.016		114 133		1.2		
T CQL HIN	0.1	2	. <u> </u>		-	0.520	0.010	0.045	100	12.0	1.0		
KQS1C	1.2				QX	0.4	0.017777		169		3.1		
KQS2C	0.6	6 2	2	4	QH	0.38	0.03595	0.25	44	22.0	1.0		
qtle3	1.{	5 1	1	1	QG	0.3	0.04	0.075	125	9.4	1.2		
qtle2	1.2				QH	0.38	0.03595	0.075	88		1.2		
qtle1	0.8				QH	0.38	0.03595	0.25	59				
qtle4	0.6				QI	0.3585	0.02817	0.08	50		0.3		
qtle5	0.5				QI	0.3585	0.02817	0.00	50		0.2		
queo					-	0.0000	0.02011	0.00		4.0	0.2		
qdpp3	1.3	3 1	1	1	QH	0.38	0.03595	0.25	95	23.8	2.3		
qdpp2	1.5				QH	0.38	0.03595		110				
qdpp1	1.2				QH	0.38	0.03595		88		1.9		
					0.11	0.00	0.00505	0.05		07.5			
qss1	1.6				QH	0.38	0.03595		110				
qss2	1.2				QH	0.38	0.03595	0.25	88		1.9		
qss3	0.8				QH	0.38	0.03595	0.25	59				
qsss3		1 1			QH	0.38	0.03595		73		1.3		
qsss2	1.2				QH	0.38	0.03595		88				
qsss1	1.5	5 1	1	1	QH	0.38	0.03595	0.25	110	27.5	3.0		
qdp1	0.6	5 1	1	1	QE	0.38	0.03095	0.4	51	20.4	1.0		
qdp1 qdp2	0.9				QH	0.38	0.03595		66		1.0		
qdp2 qdp3	0.6				QE	0.38	0.03095						
1.1.1.1													
		50		78							96.0		


Septa

- New design of TL1 reduces septa requirements (smaller injection angle)
- Parameter optimization under way (CERN INFN), in order to use a single power supply for each couple of septa.
- Present solution:
 - thick septum can be a copy of the one built for TERA (CNAO)
 - Thin septum derived from the DA Φ NE one modifications suggested by CERN
- Engineering and building by CIEMAT (waiting for funding)

- The vacuum chamber components must have a minimum impedance contribution.
- Aluminum alloy used whenever possible to minimize resistive wall effect.
- Typical cross sections: 100mm × 40mm (dispersive sections) and 40mm × 40mm

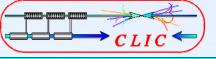
A large part of the equipment design made by INFN-LNF for chicane & DL can be used.

To be provided by INFN-LNF - waiting for approval

INFN-LNF VACUUM EQUIPMENT

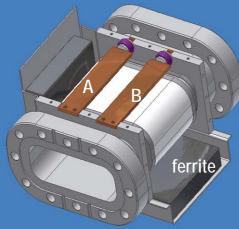
RF shielded bellow

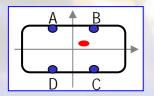
Equipment installed in CTF3


Special gasket profile for RF contact

Shielded pumping port

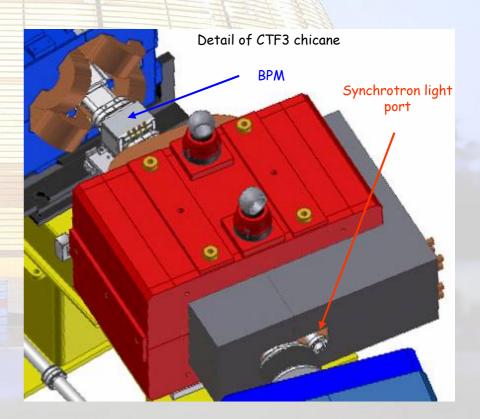
R. Corsini, 19 May 2004

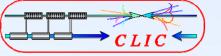

Beam position and profile measurements.

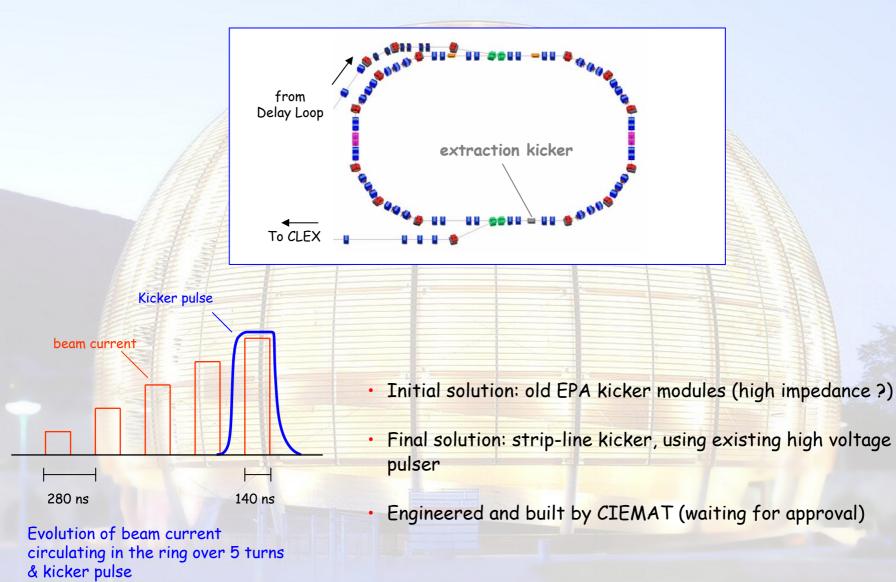

- Need about 32 beam position monitors.
- The INFN-LNF design of the chicane and delay loop BPI could be used.
- Several vacuum ports for synchrotron light, with optical lines to CCD cameras, are foreseen.

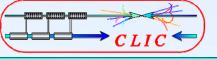
To be provided by INFN-LNF - waiting for approval

INFN-LNF

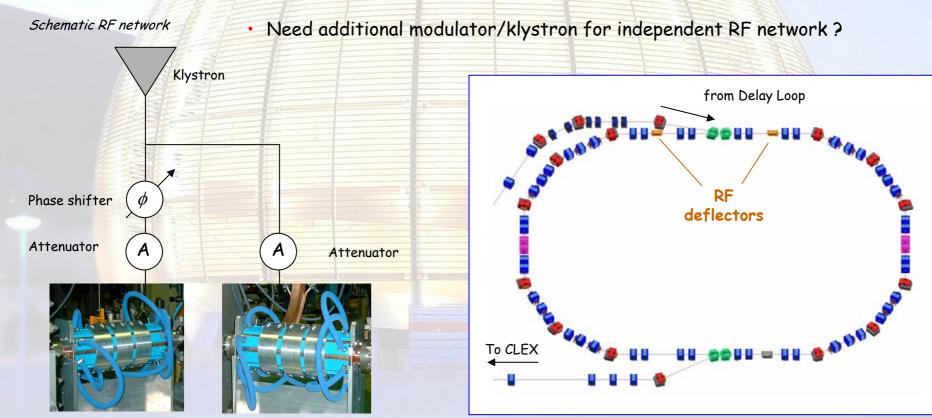

BPI




BPI during test



Extraction kicker



RF system

- Frequency 3 GHz
- Power in the 10 MW range
- The waveguide system includes power splitters, attenuators and phase shifters.
 - RF deflectors existing (INFN-LNF)

RF deflectors (INFN-LNF) installed during the Preliminary Phase