The 30 GHz accelerating structure testing program

Walter Wuensch CTF3 collaboration meeting 23 November 2004

The CLIC design accelerating gradient is 150 MV/m (high!)

At this level of gradient we are constrained by two main physical effects: rf breakdown and pulsed surface heating.

We are addressing the constraints through two main paths:

rf and linac design: Full optimization including rf breakdown, pulsed surface heating, short and long range wakefields, rf-to-beam efficiency and luminosity criteria low surface fields, short pulse lengths.

Materials: refractory metals and copper alloys

This week's accelerating structure parameters: 150 MV/m accelerating gradient (fixed) 30 GHz (fixed) 42 ns pulse length 160 MW structure input power 7 J total pulse energy $\Lambda T \text{ of } 50^{\circ} K$

Breakdown results so far

And 153 MV/m, 69 MW, 150 ns, copper, X-band, .11 a/ λ

Available Power limit (135 MW

700

State of inner radius of iris (location of highest surface electric field) surface after conditioning

30 GHz installation in CTF2

Structures currently in production

Iris diameter	material	Phase advance	geometry	Power for 150 MV/m (first cell/average)
3.5 mm	copper	2π/3	circular	56 MW
3.5 mm	Molybdenum/ copper	2π/3	circular	56 MW
3.5 mm	Tungsten/ copper	2π/3	circular	56 MW
4.0 mm	copper	π/2	circular	100 MW
3.8-3.2 mm tapered	copper	π/3	HDS	100 MW

Mo iris structure tested in CTF2, duplicate under fabrication

HDS machining test

Fully 3-d geometry 5 µm precision copper 10 cm active length

The current plan for the subsequent structures

Iris diameter	material	Phase advance	geometry	Power for 150 MV/m (first cell/average)
To be determined	Molybdenum/ copper	2π/3	circular	160 MW
To be determined	molybdenum	To be determined	HDS	160 MW
To be determined	Mo/Cu bimetallic	To be determined	HDS	160 MW

Schedule

Test area: Tank, waveguides, directional couplers, loads, vacuum, water cooling are in fabrication. Diagnostics: vacuum thermocouples, faraday cups, X-ray monitors have been requested. rf i/q signal capture planned.

Conditioning control system: 3 GHz system is under development which will be directly carried over to 30 GHz. High speed data acquisition system planned.

Structures: Mo iris structure has been given priority. We plan to test it during run 1 next year – expected duration is 1 month full-time. The 30 GHz part of run 2 is to be dedicated to power production. Further accelerating structure tests will be continued in 2006.