

CTF3 Probe Beam

G. A. Blair Royal Holloway Univ. London CTF3 Meeting, CERN 30th November 2005

- Introduction UK Context
- Draft Proposal
- Future prospects

UK funding for accelerator science for particle physics 2004 - 2007

UK funding agency, PPARC, secured from Govt. £11M for 'accelerator science' for particle physics, spend period April 04 – March 07

Bids peer-reviewed and preliminary new allocations made Oct 21 2003:

ILC-Beam Delivery£7.2M from PPARC +
£1.5M from CCLRC

2 university-based accelerator institutes

Accelerator Institutes

2 New institutes for Accelerator science:

Cockcroft: Lancaster, Liverpool, Manchester

- based at DL campus.

12 New academic positions.

John Adams Institute: Oxford, RHUL:

based at both institutes6 new academic positions.

Overview of Projects

UK LC-ABD Work Packages

- 1. Lattice design and beam simulations (D. Angal-Kalinin)
- 2. Advanced beam diagnostics (G. Blair)
- 3. Alignment and survey (A. Reichold)
- 4. Final focus luminosity stabilisation and spectrometry (P. Burrows)
- 5. e+ undulator, crab cavity system, wakefields/collimators (M. Poole)

Major programme of beam-based work ongoing at ESA (SLAC), ATF (KEK). Time to investigate possibilities of next funding round, including CTF3

A Conceptual Proposal for a Diagnostics Line at the CTF3 Probe Beam Draft 2.0 17th September 2005. G. A. Blair, John Adams Institute at RHUL, Egham. Surrey. TW20 0EX, UK. H. Braun,

CERN, CH-1211, Geneva, Switzerland

1. Executive Summary

The current planning phase of the CLEX area at CTF3 has revealed an excellent opportunity to build a flexible Instrumentation Test Beam (ITB), at a time when such an international facility is in high demand and short supply, to address both ILC and CLIC instrumentation issues. This proposal addresses some preliminary baseline requirements of the ITB, presents initial cost estimates and timelines, and identifies some key diagnostics tests that could be addressed.

CLIC key technology issues addressed in CLIC Test Facility (CTF3)

Parameters CTF3 Drive beam accelerator						
Operation mode	Drive beam generation	30 GHz power production	Single bunch			
Bunch charge	2.35 nC	1.66 nC	3 nC			
Bunch spacing	0.666 ns	0.333 ns	-			
Bunches/ Pulse	2300	1200	1			
Rep. rate	1-5 Hz	1-50 Hz	1-50 Hz			
Energy	150 MeV	210 MeV	300 MeV			
Norm. Emittance	100 µm	100 µm	20 µm			
Bunch length	4 ps	2 ps	1-10 ps			
Available	From 2006	Now	From 2007			

CLIC experimental area (=CLEX), construction of new building in 2006

- Test beam line (TBL) to study drive beam decelerator dynamics, stability and losses
- Two beam test stand

Layout for CLEX floor space

Probe beam linac with rf photo gun and velocity bunching

	Parameters		Motivation		
	Energy	~ 200 MeV	Avoid beam disruption in high RF fields		
	norm. rms Emittance	$<$ 20 π mm mrad	Fit in 30 GHz structure acceptance		
	Energy spread	< ± 2%	Measurement resolution		
	Bunch charge	0.5 nC	CLIC parameters		
	Bunch spacing	0.333 ns			
	Number of bunches	1 - 64	Measure 30 GHZ structure transients		
CTF3 Meeti	rms bunchlength	< 0.75 ps	Acceleration with 30 GHz		

CTF3 Schedule

	2004	2005	2006	2007	2008	2009
Drive Beam Accelerator						
30 GHz power test stand in Drive Beam accelerator						
30 GHz power testing (4 months per year)						
R1.1 feasibility test of CLIC structure						
Delay Loop						
Combiner Ring						
R1.2 feasibility test of Drive beam generation						
CLIC Experimental Area (CLEX)						
R1.3 feasibility test PETS						
Probe Beam						
R2.3 feasibility test representativeCLIC linac section						
Test beam line						
R2.2 Beam stability bench mark tests						

Representative Probe Beam Parameters

Energy	~ 200 MeV
Rep Rate	5 Hz
Norm. rms Emittance	< 20 п mm mrad
Energy Spread	<±2%
Bunch Charge	0.5 nC
Bunch Spacing	0.333 ns
Number of Bunches	1-64
RMS Bunch Length	<0.75 ps

Possible activities at the Instrumentation Test Beam

- Robust and reliable BPM-based energy spectrometry for the purposes of ILC/CLIC fast extraction schemes.
- Hardware development and tests of fast extraction kicker and extraction line.
- Deflecting cavity R&D for beam diagnostics; this will require additional RF provision, possibly derived from the probe beam klystrons.
- Beam phase space measurement with electron bunch longitudinal sizes similar to that of the ILC.
- Collimator wakefield studies.
- High performance BPM R&D.
- Tests of engineering prototypes of a wide range of instrumentation developed for ILC/CLIC over the coming years.

CTF3 Meeting, CERN, Nov05

FUTURE FUNDING OF LC-ABD

Current PPARC support ends in March 2007

Future proposed programme will need to be peer reviewed by the end of 2006 to ensure continuity.

The proposal for the next phase will need to take into account overall international status, UK role/responsibilities and timescales for TDR etc.

Funding for accelerator R&D awarded in SR2002 has been built into the PPARC baseline.

Linear collider R&D is given high priority by PPARC. There are long term commitments to the two accelerator R&D centres.

LARGE CAPITAL FACILITIES FUND

Linear collider is a bid from PPARC to the OST Large Capital Facilities Fund – separate funding line retained by OST for capital construction projects.

Prioritisation exercise currently underway of bids from all Research Councils – outcome not yet known but if given high priority, any funding could be for the construction phase only. Discussions with OST continue.

PPARC will have to balance the need to maintain momentum, with the funds available and other calls on the PPARC budget.

Summary

- The CLEX beam area provides an opportunity to develop a new European test facility.
- Funding is uncertain at present.
- UK industry and academic institutions are
- currently being consulted.
- Please input new ideas for instrumentation and collaboration.