

Status of the Spanish Contribution to CTF3

Luis García-Tabarés

CIEMAT

Background

Centro de Investigacio rgéticas, Medioambie y Tecnológicas

MINISTERIO DE EDUCACIÓN Y CIENCIA

Spanish Contribution as stated in the 2004 Coll. Meeting

TASKS	2004			20	005				ITE	M		DES	CRIP	OIT	J	1		LINE
	N	J N	1 I	M .	J S	6 I	N .											
0.1 "COMPL. ACTION" REQUEST														ect Mag				
0.2 " COMPL. ACTION" APPROVAL								C	orrec	tors		Combin 5. (Exist		ig and ign)	Transfe	er	July -2	2005
CORRECTORS											2 D	ouble S	Septa M	lagnets	for the			
1.1 DRAWINGS & TOOLING									Sept	ta	Con	nbiner F	Ring (O	nly a re	ference		Dec-2	2005
1.2 FABRICATION													desig	n)				
SEPTA									Kicke		1 "St	ripline"	Extract	ion Kicł	er (Onl	y c	Oct-200	
2.1 DESIGN								_	NICKE	rs		a ref	erence	design)		JCI-200	
2.2 DRAWINGS & TOOLING											1!	5 Quad	rupole N	Magnets	s with			
2.3 FABRICATION								Т	BL QI	uads	moto	rised s	upport s	structur	e for the	e	Mid-2	007
KICKERS												Те	st Bear	n Line				
3.1 CALCULATION									DET	~	1	Power	Extract	ion Tra	nsfer			000
3.2 DESIGN									PET	5		Sys	tem Pro	ototype			Dec-2	2006
3.3 DRAWINGS & TOOLING																		
3.4 FABRICATION & TESTS																		
TBL QUADS.																		
4.1 MAGNET DESIGN																		
4.2 STRUCTURE DESIGN																		
4.3 MAGNET DRAWINGS																		
4.4 STRUCTURE DRAWINGS																		
45 MAGNET FABRICATION																		
4.6 STRUCTURE FABRICATION																		
4.7 ASSEMBLY & TESTS																		
PETS																		
5.1 CALCULATION & DESIGN																		
5.2 DRAWINGS																		
5.3 FABRICATION OF ONE OCTANCT																		
5.4 FABRICATION OF A PROTOTY PE																		

O. Financial Request

MINISTERIO DE EDUCACIÓN Ciema

TASKS	200)4			20	05					20	006				2	007	
	Ν	J	М	М		J	S	Ν	JI	Л	М	J	s i	ν.	JI	М	М	J
0.1 " COMPL. ACTION" REQUEST																		
0.2 " COMPL. ACTION" APPROVAL																		


MAIN ACTIVITIES DURING THE PAST YEAR:

- Request Preparation & Presentation for 1/2 of the overall budget (December 05)
- Unofficial Request Approval (= T_0 for CIEMAT) (March 05)
- Official Request Approval (October 05)

SHORT TERM ACTIVITIES:

- Request Preparation & Presentation for the remaining 1/2 of the budget (March 06)
- Request Approval (??. 06)

1. Orbit Corrector Magnets (I)

MAIN ACTIVITIES DURING THE PAST YEAR:

- Placement of the Order (December 04)
- Drawings for Approval (March 05)
- Drawings Approved by CERN (April 05)
- Tooling development (May 05)
- Laminations fabrication (June 05)
- Pre-Series delivery to CERN (2 Magnets) (September 05)
- Final Approval by CERN (Magnetic Measurements) (Pending)

PRESENT STATUS:

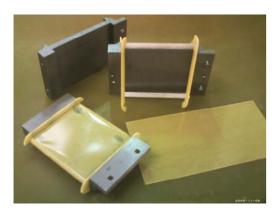
- All the magnet components are under fabrication
- Pole fabrication is almost finished (100% stacked & cured, 100% machined, 25% wound & tested)

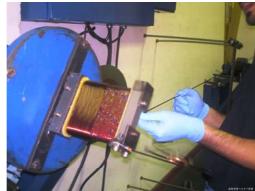
SHORT TERM ACTIVITIES:

- All the coils will be wound in 3 weeks
- Magnets will be mounted 4 weeks later : All the units should be finished by the end of the year

CONCLUSION: An overall delay of 5 months, but still on time for CTF3

1. Orbit Corrector Magnets (II)




STATUS OF THE FABRICATION PROCESS

1.- POLE STACKING

2.- POLE INSULATION



3.- WINDING

4.- COIL ELEC. TESTS

5.- FINAL ASSEMBLY (PRE-SERIES)

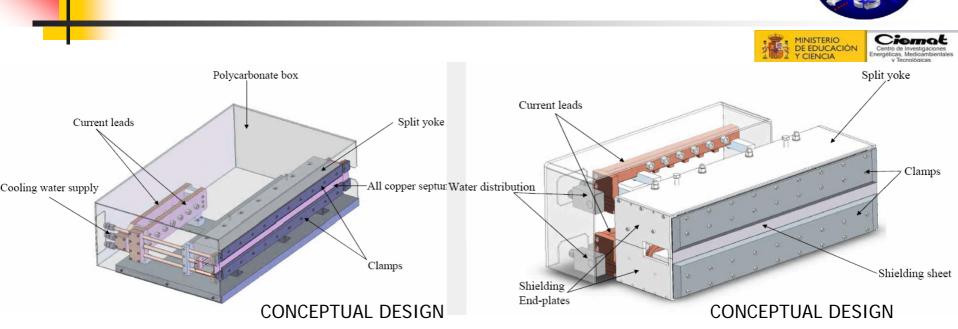
2.- Septa Magnets (I)

Ciemo

MINISTERIO DE EDUCACIÓN

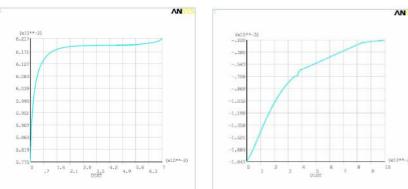
TASKS	2004			20	05					20	06				20	07	
	N ·	J M	Ν	1.	J	S	Ν,	J M	Ν	Л.	JS	6 N	ι.	J N	1 1	M J	I
SEPTA																	
2.1 DESIGN																	
2.2 DRAWINGS & TOOLING																	
2.3 FABRICATION																	

MAIN ACTIVITIES DURING THE PAST YEAR:


- Start of the Conceptual design (March 05)
- Placement of the Order for the Conceptual Design (June 05)
- Technical Design Review of the Conceptual Design at CERN (July 05).
- Final Report on the Conceptual Design (July 05)
- Placement of the Order for the Fabrication (October 05)

SHORT TERM ACTIVITIES:

- Fabrication Drawings (December 05)
- Tooling and Components Fabrication (excl. Coils) (January 06).
- Coil Fabrication (February 06)
- Magnet Assembly: Septa Finished (15-March-2006).


CONCLUSION: An overall delay of 2 $^{\rm 1/2}$ months, but still on time for CTF3 (IN THE LIMIT)

2.- Septa Magnets (II)

Thick Septum

Thin Septum

MAGNETIC CALCULATIONS

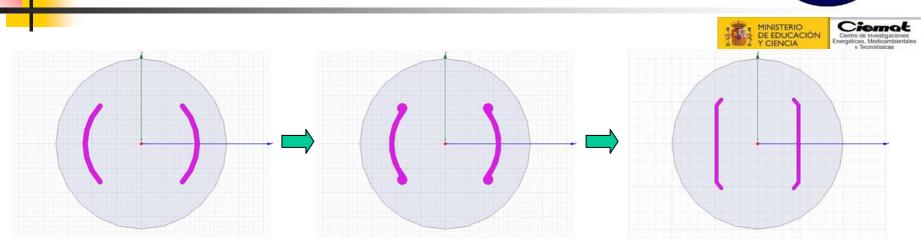
MAGNETIC MODELLING

3.- Kicker Magnet (I)

MINISTERIO DE EDUCACIÓN

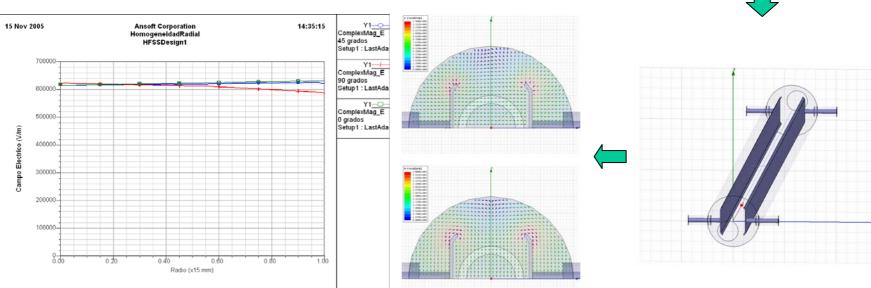
TASKS	2004			20	005					20	06				20	07	
	N .	J M	N	1.	1 ;	1 6	v.	J M	N	Л .	J S	5 N	ι.	J N	1 1	V J	
KICKER																	
3.1 CALCULATION																	
3.2 DESIGN																	
3.3 DRAWINGS & TOOLING																	
3.4 FABRICATION & TESTS																	

MAIN ACTIVITIES DURING THE PAST YEAR:


- Visit to Frascati to start contacts with INFN about the kicker design. (February 05)
- Placement of the order to purchase HFSS (April 2005)
- A new engineer joints the team, devoted specifically for this development (August 05)
- Arrival of the HFSS license to CIEMAT & Installation on a specific PC (3GHz,2Gb RAM) (August 05)
- First simulation of a Stripline Kicker based on INFN previous designs (September 05)
- New visit to Frascati. Discussion about specifications, model geometries and kicker optimization parameters. (October 05).
- Starting of calculations & simulations of a real magnet (November 05)

SHORT TERM ACTIVITIES:

- Conceptual Design of the Kicker Magnet (March 05)
- Drawings for Fabrication (April 05)


CONCLUSION: An overall delay of about 4 months, but correction actions can be taken to have the magnet finished by the end of 2006

3.- Kicker Magnet (II)

STUDY OF DIFFERENT CROSS-SECTIONS: IMPEDANCE CALCULATION

MAGNETIC & ELECTRIC FIELD CALCULATIONS FROM THE COMPLETE GEOMETRY

3.bis.- Kicker Power Supply

MAIN ACTIVITIES DURING THE PAST YEAR:

• First meeting with SLAC to discuss a possible collaboration with LLNL for the development of the kicker pulser. (Very Unlikely). (May 05)

• Contact with Spanish Industry to develop this pulser which has other potential applications (Feb-Nov 2005)

SHORT TERM ACTIVITIES:

• To be defined

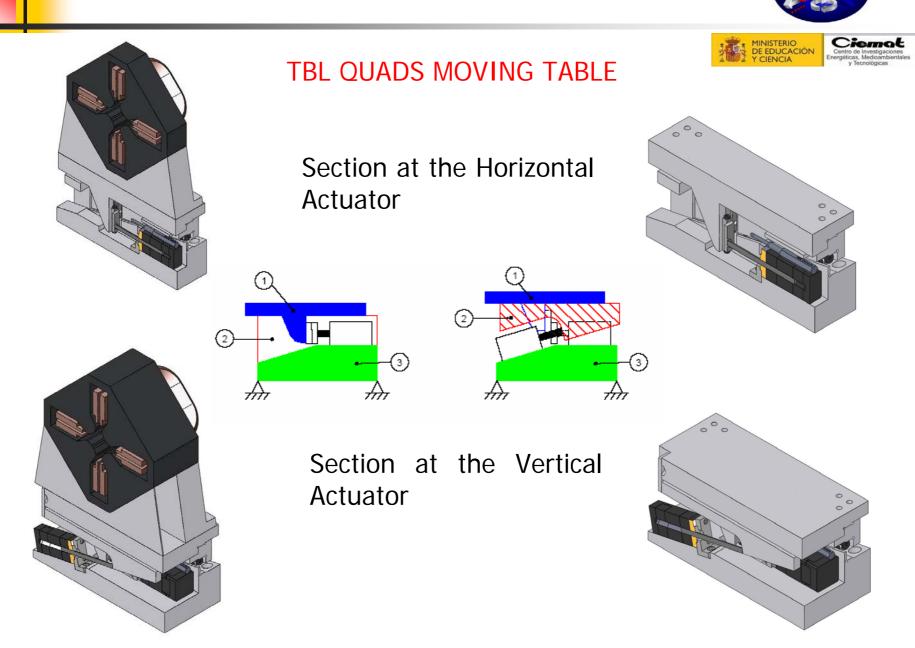
CONCLUSION: A decision must be taken on how to continue with this development. Spanish participation on her own seems very difficult

4.- TBL Quads (I)

MINISTERIO DE EDUCACIÓN Y CIENCIA Ciema

TASKS 2004 2005 2006 2007 Ν .1 М Μ S Ν J Μ Μ S Ν J М М J TBL QUADS. 4.1 MAGNET DESIGN **4.2 STRUCTURE DESIGN 4.3 MAGNET DRAWINGS 4.4 STRUCTURE DRAWINGS** 4..5 MAGNET FABRICATION **4.6 STRUCTURE FABRICATION** 4.7 ASSEMBLY & TESTS

MAIN ACTIVITIES DURING THE PAST YEAR:


- Analysis of solutions for the Moving Table (March 05)
- Moving Table Conceptual Design (October 05)
- Moving Table Component Selection (October 05)
- Moving Table Technical Design presentation at CERN (November 05)

SHORT TERM ACTIVITIES:

- Validation of Design and Components (December 05)
- Drawings of the MT Prototype (February 05)
- Fabrication of the MT Prototype (June 05)

CONCLUSION: Initial planning has been changed significantly to stress the work on the Moving Table as Magnet Design and Fabrication seems a more conventional activity.

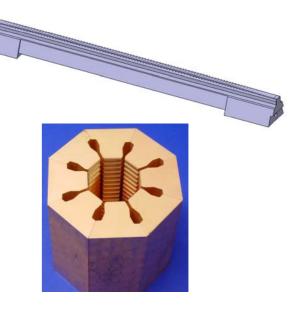
4.- TBL Quads (II)

5 PETS

Ciemo

MINISTERIO DE EDUCACIÓN

2004 TASKS 2005 2006 2007 Ν М М S Ν Μ Μ S Ν Μ М PETS 5.1 CALCULATION & DESIGN 5.2 DRAWINGS 5.3 FABRICATION OF ONE OCTANCT 5.4 FABRICATION OF A PROTOTY PE


MAIN ACTIVITIES DURING THE PAST YEAR:

- Market survey for PETS fabrication in Spain (Jan-Sep 05)
- Purchasing of the HFSS software (August 05)
- A new engineer joints the team, devoted specifically for this development (Nov 05)
- First trials to machine one small PET octant at CIEMAT (Sep-Dec 05)
- Placement of the order to manufacture a 400 mm PET Octant at the Industry (Oct 05)

SHORT TERM ACTIVITIES:

- Reception of the first industrial prototype of PETS octant (January 06)
- Verification of CIEMAT PETS Octant (February 06)
- Stay at CERN of the CIEMAT engineer for the full PETS design (Nov-?? 06)

CONCLUSION: Relevant modifications have been made in the planning due to the delay in the starting of the new engineer (design has been substituted by fabrication)

• There is an overall delay of the project due to the addition of administrative and technical problems. Nevertheless the final goals are still achievable.

• For the moment the most critical points are the delivery of the correctors (Dec-05) and the Septa (March-06)

• A final decision on the development of the kicker pulser should be taken a.s.a.p.

• Short term goals should be the fabrication of a kicker prototype, a TBL Moving Table and the design of a PETS along with the verification of its industrial fabrication process.